Protection of privacy

Protection of privacy

Shonan meeting : Anonymization methods and inference attacks: theory and practice

http://shonan.nii.ac.jp/shonan/blog/2016/12/20/anonymization-methods-and-inference-attacks-theory-and-practice/ Organizers Hiroaki Kikuchi, Meiji University, Japan Josep Domingo-Ferrer, Universitat Rovira i Virgili, Spain Sébastien Gambs, Université du Québec à Montréal (UQAM), Canada Overview The democratization of mobile systems and the development of information technologies have been accompanied by a massive increase of the amount and the diversity of data collected about individuals. For instance, […] Read more

Protection of privacy

Workshop on Decentralized Machine Learning, Optimization and Privacy

https://team.inria.fr/magnet/workshop-on-decentralized-machine-learning-optimization-and-privacy/ Presentation With the advent of personal devices with computation and storage capabilities, it becomes possible to run machine learning on-device to provide personalized services to users without exposing their sensitive data to large data centers. Such decentralized architectures allow individuals to better control their data (with potential incentives for its usage), as well as […] Read more

Protection of privacy

Anonymisation de mégadonnées

https://evenements.uqam.ca/detail/774224-anonymisation-de-megadonnees ANONYMISATION DE MÉGADONNÉES CONFÉRENCIER: Josep Domingo-Ferrer Chaire UNESCO vie privée Universitat Rovira i Virgili Catalogne http://crises-deim.urv.cat/jdomingo RÉSUMÉ: L’explosion des mégadonnées ouvre des possibilités d’analyse et d’inférence tellement énormes qu’elles peuvent permettre de modéler le monde et d’en prédire l’évolution avec une grande précision. Le côté obscur de cette abondance de données personelles est qu’elle complique la préservation de […] Read more

Protection of privacy

Workshop on Design Issues for a data Anonymization Competition (WODIAC)

https://petsymposium.org/2017/workshop.php The analysis of large scale datasets, often refer to as Big Data, offers the possibility to realize inferences with an unprecedented level of accuracy and details. However, this massive collection of information also raises many privacy issues since most of these datasets contain personal information, which is thus sensitive by nature. As a result, […] Read more