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1 Introduction

Context. The democratization of mobile systems and the development of information tech-
nologies have been accompanied by a massive increase in the amount and the diversity of data
collected about individuals, often referred to as Big Data. Furthermore, in Machine Learning,
the Deep Learning revolution [LBHI15| coupled with the access to Big Data has enabled a
“quantum leap” in the prediction power in many domains, which has led to the possibility to
realize inferences with an unprecedented level of accuracy and details. This success of machine
learning models is such that they are now ubiquitous in our society. For instance, machine
learning-based systems are now used in banking for assessing the risk associated with loan
applications, in hiring systems to assess the quality of an applicant [FTT12] and in predictive
justice to quantify the recidivism risk of an inmate [Elel6]. However, the widespread use of ma-
chine learning models also raises serious privacy and ethical issues, especially if their predictions
are put into action in domains in which they can significantly affect individuals [AGGIS).

Privacy issues in machine learning. With respect to privacy, in addition to the inferences
that can be made from the data itself, it is also important to understand how much the output
of the learning algorithm itself (e.g., the model) leaks information about the input data it was
trained on. For instance, new attacks have been recently developed against machine learning
models in which the training data can be reconstructed from the model [FLJ"14| either in
the white box setting (i.e., in which the description of the model is known) or the black
box setting (i.e., in which it is only possible to interact with the model by querying an API
with a particular input to receive the associated output). Another possible inference attack
against a machine learning model is a membership attack [SSSS17| in which the objective of
the adversary is to be able to predict whether the profile of a particular individual (which is
known to him) was in the dataset used to train the model. Generally, this inference is deemed
problematic if revealing the membership of the profile to this database leads to learning of
sensitive information (e.g., that the individual is part of a cohort of patients for a disease).
This line of research is still in its infancy, and much work remains to be done, in particular
with respect to how to prevent these inference attacks, even if some preliminary protection
methods [YGEFJIS| have been proposed based on differential privacy [DR*14].

Ethical issues in machine learning. In addition to privacy, the machine learning commu-
nity has also started recently to investigate ethical issues such as the fairness, accountability
and transparency of machine learning models through the organization since 2014, of an annual
specialized workshop dedicated to this issue? and more recently through the creation of the
FAccT conference®, which follows a highly multidisciplinary approach to address some of the
ethical challenges highlighted in the following. Among other things, this work has led to
fundamental questions about the ways one can define a fair algorithm, as well as the meaning

*http:/ /www.fatml.org
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of social justice in an advanced capitalist economy [Raw01]. The European lawmakers have
also enacted some measures that asked to provide for more accountability [CR19].

In recent years, several initiatives [FC19]% 782 were launched to propose design principles
and guidelines for the responsible development of artificial intelligence. However, very few
research works have explored the tensions, but also convergences that can emerge when addressing
jointly the privacy and ethical challenges when designing and deploying machine learning models.
For example, to be able to audit a machine learning model for potential biases, it is often easier
(but not necessarily mandatory) to have access to its structure or at least an approximation,
thus highlighting the strong link between transparency and fairness. In addition, some research
has proposed to use anonymization methods as a way to enhance fairness as a side effect
(e.g., JABG™21]), thus showing a positive connection between privacy and fairness.

A fundamental open question is to investigate when the achievements of these different
objectives results in a positive sum game. Indeed, as shown by recent work [MSDH19|, aiming
for interpretability can open the door to inference attacks against privacy. In addition, being
able to quantify the level of discrimination of a particular machine learning model usually
requires the collection of sensitive data, such as the attributes that could lead to discrimination,
which is clearly in tension with privacy. Finally, it is possible that, under the excuse of making
its models more interpretable and transparent, a company might be tempted to perform
fairwashing, which can be defined as promoting the false impression that the models used
by the company respect some particular ethical values while it might not be the case. An
example of such a risk has been studied in [AAFT19|] in which the authors demonstrate that it
is possible to use black-box explanation to rationalize the decisions of a predictive model that
is particularly discriminating towards a subgroup of the population.

Objective and organization of the report. We believe that to be able to understand
how to best address privacy and ethics responsibly when developing machine learning models,
we need first to have a clear view of how these concepts interact with each other in a positive as
well as negative manner. The objective of our report is precisely to investigate this question by
following an interdisciplinary approach at the crossroads of computer science, law and ethics.

The outline of the report is the following. First, in Section [2 we briefly describe the
background notions of machine learning before reviewing in Section [3| the main conceptions of
privacy that exist in the literature as well as the main privacy attacks that have been developed
in recent years against machine learning models before discussing the relationship between
privacy and innovation in Section [d] Afterwards, each of the following section will be dedicated
to explore and discuss the intersection between privacy and other ethical issues such as Fairness
(Section [5]), Transparency (Section [f]), Accountability (Section [7)), Security (Section [8.1]) and
the Right to Erasure (Section [3.2).

SHuman Rights in the Age of AI, Access Now (2018).

"Ethics Guidelines for Trustworthy AI, High-Level Expert Group on Al set up by the European Commission
8 April 2019.

SMicrosoft AT Principles (2018).

9Déclaration de Montréal (2018).
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For each of this ethical issue, we will discuss first how it has been conceptualized in the field
of law and ethics before describing how this issue has been formalized and addressed within
the field of machine learning. Afterwards, we will highlight the main convergences and tensions
between this ethical issue and privacy within the context of machine learning by trying to draw
generic observations as well as possible remediations to solve the tensions. Finally, we discuss
in Section [9] the new issue of ethics washing, which referred to promoting the false impression
that a machine learning model respect some ethical values while it might not be the case before
concluding the report in Section

2 Machine learning fundamentals

Artificial intelligence, machine learning and deep learning. Artificial Intelligence is
usually defined in a broad manner as the area of computer science that develop theories and
algorithms with the objective of providing machines with the capacity to simulate the behaviour
of human with respect to some tasks. Expert systems that encode the knowledge of experts
in the form of if-then-rules, which have been used in the medical domain and algorithms
that simulate a player of a particular game based on heuristics for exploring the search space
efficiently, are some examples of early research topics in artificial intelligence.

Machine Learning is a subfield of Artificial Intelligence, in which the objective is to give
the ability to machine to learn from examples, rather than encoding rules directly. Finally,
Deep Learning is itself a specific subdomain of Machine Learning that targets the training of
learning algorithms and architectures called “deep neural networks”. Deep neural networks are
a form of neural networks based on many layers (in contrast to a few for early implementations
of neural networks) that have lead to important breakthroughs in tasks in domains such as
computer vision, natural language processing that were previously considered difficult.

To quote Gary Marcus & Ernest Davis in their book Rebooting AI [MDI19|: “A handy
way to think about the relation between deep learning, machine learning, and Al is this Venn
diagram. Al includes machine learning, but also includes, for example, any necessary algorithm
or knowledge that is hand-coded or built by traditional programming techniques rather than
learned. Machine learning includes any technique that allows a machine to learn from data;
deep learning is the best-known of those techniques, but not the only one.”

One of the most common definitions of machine learning is due to Tom Mitchell [Mit97]:
“A computer program is said to learn from experience F with respect to some class of tasks
T, and performance measure P, if its performance at tasks in T', as measured by P, improves
with experience E”. Generally speaking, one can distinguish three types of tasks T', namely
supervised learning, unsupervised learning and reinforcement learning [Mur21].

Supervised learning. Supervised learning aims at learning a function f (i.e., typically a
machine learning model) mapping an input z (e.g., the profile of an individual) of a particular
feature space X to an output y (e.g., a prediction with respect to the input profile) of another
domain Y. The components of a model are often referred to as parameters or weights, and the
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Figure 1: Illustration of artificial intelligence and its subdomains taken from [MD19].

parameters of the algorithm used to find a model are called hyperparameters. When Y is a
categorical domain, the learning task is called classification while if Y is a real-valued domain,
it is called a regression.

The prediction of whether or not someone applying for a loan at the bank will be able to
reimburse it is an example of a (binary) classification task while inferring the risk of recidivism
(e.g., on a scale of 1 to 10) of an inmate that is preventively released is a form of regression.
For both classification and regression tasks, the associated experience F is a training phase, in
which a set of pairs (z,y), hereafter referred to as training data, of inputs x and their associated
outputs y —usually referred to as labels— are used to build a model that can reliably predict
the output for any data that comes from X.

The performance P of the learning process is usually measured by a training error quantifying
how close the predicted output ¢ is to the real output y. In addition to having a small training
error (which could be obtained, for instance, if the model memorizes the training data), a key
property in machine learning is to be able to generalize to new pairs (x,y). Generalization is
generally estimated by evaluating the accuracy of the model prediction on a previously unseen
dataset often called the test set.

Unsupervised and reinforcement learning. Unsupervised learning aims at discovering
patterns in unlabelled data (i.e., data samples with no particular outputs/labels associated).
Compared to supervised learning, the experience F associated with unsupervised learning can
be diverse and includes problems like finding clusters in the data, finding low dimensional
representation of the data or simply understanding the data distribution. Finally, reinforcement
learning aims at training agents to identify the best sequence of actions to take in a given
environment by optimizing a cumulative reward. The experience F associated with such types
of tasks consists of iteratively learning to distinguish good actions from bad ones through a



trial-and-error process.
In this report, we will mainly focus on the privacy and ethical issues related to supervised
learning.

3 Privacy and Machine Learning

3.1 Conceptions of privacy

Privacy has different meanings for legal scholars, which can be grouped into three main
categories. Some refer to privacy as restricting access, in which privacy is reduced when more
people have access to one’s personal information or the same number of people have access to
less of one’s personal information. Others define privacy as control, in which increasing privacy
is increasing the level of control over one’s information, thus also associated privacy with
autonomy. Finally, others view privacy as contextual integrity, in which privacy is preserved to
the extent that personal data is transferred in compliance with informational norms that exist
in society [Nis09]. More importantly, under all three conceptions, privacy is about setting the
norms for the collection, use and dissemination of people’s personal information. Focusing on
disclosure while ignoring collection and use is thus a reductive and, from the point of view of
legal scholars, incorrect view of privacy.

In this report, the concept of privacy will be considered in the light of the Canadian context
but also with respect to the European Union law, especially the General Data Protection
Regulation (GDPR). With respect to Canada, we will mainly focus on two federal privacy
laws: the Personal Information Protection and Electronic Documents Act (PIPEDA), which
covers the personal information-handling practices of businesses and the private sector, and the
Privacy Act, which covers the personal information-handling practices of federal government
departments and agencies in the public sector, as well as the constitutional law in the form of
informational privacy protected in section 8 of the Canadian Charter of Rights and Freedoms.

Finally, our analysis builds on the premise that we need to protect privacy for various
reasons [DeC97, vdHBPW20, [VéI21]. These include, but are not limited to, preventing harm
as unrestricted access to personal data — bank account, social media profile, whereabouts,
and so on — can lead to harming people (e.g., profiling, targeted advertisement, identity theft,
... ), either intentionally or not. Privacy is also necessary for protecting freedom and autonomy.
Indeed, a lack of privacy may expose people to entities that will constraint their choices and
bring them to make decisions they would not have otherwise made. Privacy is also needed for
securing informational justice and social power. More precisely, people must be able to have
some control over their personal information to avoid being misrepresented, to be empowered
when dealing with other people, when negotiating contracts, and so on. Finally, privacy is
a fundamental requirement for preserving human dignity as a lack of privacy can impose a
psychological burden on people but also lead them to make different choices and even lose
their sense of themselves. One may think, for instance, of people that are subjected to mass
surveillance or any other form of illegitimate surveillance.



3.2 Privacy attacks against machine learning models

Hereafter by the term adversary, we will refer to any entity that aims at recovering the personal
data of an individual without the latter’s explicit consent. In practice, this broad definition can
cover a wide class of potential attackers. To realize his objective, the adversary will perform a
privacy attack (also called an inference attack) against a machine learning model. The vast
majority of works that have investigated privacy attacks in machine learning have considered
almost exclusively the supervised learning setting and, more precisely, classification tasks.
Inference attacks against machine learning models include membership inference [SSSS17],
property inference [AMST 15|, model inversion [FJR15], model extraction |TZJT16| and training
data reconstruction |[CLET19]. We will briefly review these families of inference attacks in the
following.

Membership inference. Membership inference attacks against machine learning models
have been introduced by Shokri, Stronati, Song and Shmatikov [SSSS17]. Consider a data
record x and a target model M trained over a training dataset D. A membership inference
attack consists of predicting if x belongs to D while only observing the predictions of M. For
instance, the authors demonstrated the possibility for an adversary to assess a data subject’s
presence in a medical dataset (e.g., cancer patients), highlighting the potential privacy damage
this type of attack can cause.

Property inference. Property inference attacks involve training a meta-classifier to detect
if the target model has a given property P JAMS™15|. For instance, property inference attacks
have been used to learn that people from a particular ethnic group produce a speech recognition
system’s training set or that the data used to train a particular type of network traffic classifier
come from a specific type of traffic. Property inference can be viewed as a generalization of
membership inference, for which the property to infer is “Does D contain x 7”.

Model inversion. Model inversion attacks aim at predicting, given a target model M and
an output class y, the sensitive hidden features of inputs = such that M (z) = y. As a result,
the adversary will learn the average of the inputs that belong to the class y (i.e., an average
representative of the class). Initially, model inversion has been used [FJR15| (1) to infer if
participants to a survey have admitted to cheating on their partner and (2) to reconstruct
people’s faces by inverting a facial recognition system.

Reconstruction of the training data. Training data reconstruction attacks are similar
to model inversion attacks. However, instead of recovering global characteristics of profiles
belonging to a particular class, they aim to reconstruct the original training records. For
instance, recent works have shown that one can recover private data such as credit card numbers
from language models [CLET19| and that this risk is exacerbated in larger language models
such GPT-2 [CTW™20).



Model extraction. Model extraction attacks aim at inferring, given a target model M and
its predictions for a chosen set of inputs, the parameters and/or hyperparameters of the model.
When performing model extraction, the objective of the adversary can be either to optimize
the accuracy of the model (e.g., if he wants to sell the use of the model afterwards) or its
fidelity with respect to the target model (e.g., if the model extraction is a preliminary step
before conducting another attack). Tramer, Zhang, Juels, Reiter and Ristenpart |[TZJT16]
have demonstrated the effectiveness of such attacks by reconstructing several machine learning
models after querying online Machine-Learning-as-a-Service (MAAS) platforms. Wang and
Cong [WG18]| have also proposed attacks to steal hyperparameters of several machine learning
models.

4 Privacy and Innovation

Data access and data collection, which include consumer data and other personal data, are
often presented as an important factor for innovation in machine learning or innovation in the
technology industry as a whole. This suggests a tension between privacy and innovation, but
a careful analysis of the literature advises great caution before endorsing this view, for the
protection of privacy may not undermine technological innovation as much as it seems. In the
following, we discuss the business model of some technological corporations and the role that
private data and advertising plays in that model before explaining the tension, or the lack
thereof, between privacy and innovation.

The business models of companies in the technology industry often share a common feature:
offering free services to a wide user base in order to collect personal data and convert this
resource into a money stream [Gall7, [VéI21]. Data monetization can be performed directly if
the data is sold directly to other parties, or indirectly if it is used to generate other products or
services |[Lan20]. Companies such as Alphabet, the holding company of Google, or Facebook,
use the data collected on their users to build finely-grained personal profiles, which are then
used to sell targeted advertisements. In addition, the practice of collecting and accumulating
private data seems pervasive in the technology industry as a whole [Zub20], as well as other
sectors: insurances, finance or banking, the health sector [BvdH15|, and so on.

Using private data raises issues of privacy, but it is also believed to be an important vector
for business productivity and innovation [noal6l, moal9, [Ngl18|. This claim can be interpreted
in at least two different ways with respect to innovation in machine learning. First, the
advertisement business is very profitable for some technological corporations, such as Alphabet
and Facebook, which are also leaders in developing this technology. In fact, these companies
are among the wealthiest companies in the world, both in terms of their market value and their
access to liquidity [Marl7]. This provides important economic resources to invest in research
and development, and to develop new innovative products.

While it is plausible that access to liquidity helps some technological companies innovate,
one may wonder if personal data and privacy-invading advertisements are a necessary part
of that equation. Lobbyists or representatives for big technology companies often argue that
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strong privacy laws would hurt the advertisement market and curb innovation, but there is
sparse empirical evidence to back up this claim [VéI21], Weil9]. For instance, the technological
industry sells different kinds of advertising, with some forms of ads not being as privacy-invasive
as others. Companies could rely more on context — rather than personal profiles — to target
their audience: ads on cars can be shown to people that have searched “car” or visited car
websites. This would avoid targeting users based on personal attributes such as gender, age,
race or political beliefs. There no reason to believe that more contextual advertising is less
effective or less profitable, but this would reduce the need to collect personal data and build
consumer profiles.

The second interpretation of the claim that private data is a vector for business innovation
suggests that this data is important to train machine learning models. One may think, for
instance, of the algorithms that Facebook or Alphabet uses to deliver ads [Fac20], personal
vocal assistants such as Apple’s Siri or Amazon’s Alexa, or conversational robots. In fact, it is
often claimed that some companies lead in their specific market precisely because they have
access to that data. According to this second interpretation, access to personal data is not
a vector of innovation because it increases spending power in research and development, but
rather because access to private data is a necessary ingredient for developing new machine
learning models.

However, there are also reasons to question these claims. While it is true that personal
assistants or recommendation algorithms are challenging to build without access to private
data on consumers, this seems to be the exception rather than the rule. Many of the most
popular machine learning applications do not require private data collected by business firms.
One may think, for instance, of the GPT-3 model developed by the OpenAl corporation that
uses deep learning to produce human-like texts. The model was trained on an improved version
of the CommonCrawl dataset that comprises a large amount of public web pages [BMR™20)].
Additional examples include other natural language processing applications, translation appli-
cations such as Google Translate, computer vision and most machine learning models used in
the health sector [FDC20].

5 Privacy and Fairness

5.1 Conceptions of fairness

The notion of fairness strongly overlaps with the notion of “equality” and “equity” while still
being different from these two other normative ideals in some respects. For instance, the
political philosopher John Rawls introduced a theory of social justice labelled “Justice as
Fairness” promoting the importance of freedom and equality in society [Raw99|. This theory
claims that some inequalities — which possibly includes higher income for the most talented
individuals in society — could be fair if they are advantageous to the least well-off. Other
contemporary ethical theories can permit some forms of reverse or positive discrimination
against groups that have been treated unfairly in the past. In this respect, policies that promote
hiring more women or members of visible minority groups can be fair, even if these policies
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imply the unequal treatment of some individuals [Goll5].

In the field of law, “fairness” can have different interpretations, such as “loyalty” or “equity”.
An example of “loyalty" can be given in contractual matters. Fairness is a component of
good faith (bona fide), enshrined by judges (common law) or the legislator (Civil Code of
Québec). This obligation of good faith makes it possible to integrate into contractual life a
moral dimension comprising duties of loyalty, collaboration and information. Moreover, it
should be noted that in 2016, the French lawmaker created some new “loyalty” obligations for
online platforms, which are integrated into the Consumer Code. It mainly consists of providing
consumers with fair, clear and transparent information on their services’ terms and conditions.
The services targeted are those referencing, ranking and dereferencing content, goods or services
that rely on algorithmic systems.

Equity is the moderating principle of objective law (laws and administrative regulations)
according to which everyone is entitled to fair, equal and reasonable treatment. In certain
limited cases, the law makes room for the notion of equity by leaving it to the judge to determine
“ex aequo et bono” (according to what is fair and good), by setting aside legal rules when he
believes that their strict application would have unequal or unreasonable consequences.

It is also important to distinguish between equality and equity. Equality in law means
treating all people the same, regardless of their circumstances. The objective of legal equity is to
ensure that everyone is treated fairly, equally and reasonably, according to their circumstances.
This principle is used when the strict application of (legal) rules would result in unfair
consequences to one of the parties. Equity, therefore, allows for the implementation of
corrective measures that can lead to affirmative action. Fairness in machine learning interacts
with two forms of prohibited discrimination. Direct discrimination happens when a decision
model makes a prohibited classification. Indirect discrimination happens when a decision
disproportionately disadvantages members of a protected category.

5.2 Fairness in machine learning

The discrimination that can occur due to the use of prediction made by machine learning
models deployed in automatic decision systems can result from many causes, such as an error
in the measurement process that led to the collection of the training data or an error made
by the classifier on particular sub-groups of the population. More often, discrimination arises
because the training data is inherently biased for historical and societal reasons and that the
classifier learns to reproduce this negative bias. If a dataset possesses a strong bias towards a
particular protected group of the population (e.g., an ethnic group or a vulnerable minority)
that can easily be detected, a naive solution would consist in simply removing the sensitive
attribute from the training data, thus avoiding direct discrimination.

However, indirect discrimination is still possible in this case due to the correlations that exist
between the sensitive attribute and other attributes. In particular, some attributes strongly
correlated with the sensitive attribute could act as prozies even if this attribute is removed
from the data. Furthermore, there are many ways [FSV16, [SG19] in which (un)fairness can
be introduced in machine learning models, from which data-related issues are just a fraction
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of them. Algorithmic design choices such as model compression [HCC™19, HMC™20)|, early
stopping techniques [AH20, [JZTM20] or how data confidentiality issues are handled [BS19]
can all affect machine learning models’ performances on different sub-groups of a population.

Several notions of fairness have emerged in recent years in machine learning to quantify and
formalize this concept as well as to develop fairness-enhancement methods [Nar18|, BHJ 18|
VRIS, [CR18|. Most of these notions can be categorized into three families. First, approaches
based on group fairness [CV10,[Chol7, [KMRI7, HPS™16,[ZVGRGIT] aim at producing machine
learning models that approximate parity for given statistical measure (e.g., false positive or
false negative rates) across a given set of subgroups of the population, defined by the sensitive
attributes. Second, the rationale behind techniques implementing individual fairness [DHP12,
JKMRI6] is that machine learning models should output the same decisions for similar
individuals, for a given definition of similarity. For instance, if two profiles are identical,
except for a sensitive attribute such as gender or race, the machine learning model should
output the same prediction. Finally, fairness-aware methods relying on causal fairness [KCP17,
KLRS17, INS18] leverage on causal assumptions to estimate the effects of sensitive attributes
(e.g., gender or race) on other attributes as well as to design machine learning models that
are constrained to exhibit a tolerable level of discrimination with respect to these sensitive
attributes.

5.3 Convergences

Fairness as a fundamental principle of privacy legislation. From a legal point of view,
several convergences between fairness and privacy are perceptible. First, personal data shall
be processed lawfully, fairly and in a transparent manner in relation to the data subject
(“lawfulness, fairness and transparency”) (see GDPR, article 5). The principles of fair and
transparent processing require that the data subject be informed of the existence of the
processing operation and its purposes. The controller should provide the data subject with any
further information necessary to ensure fair and transparent processing, taking into account
the specific circumstances and context in which the personal data are processed.

Provisions for automated decision systems. There is also a convergence when it comes
to evaluating personal aspects relating to a natural person that is based on automated processing.
Such automated decision systems are used to make predictions, recommendations or decisions
about individuals that could have significant impacts on them.

The GDPR enacts the right not to be subject to a decision, which may include a measure,
evaluating personal aspects relating to him or her which is based solely on automated processing
and which produces legal effects concerning him or her or similarly significantly affects him or
her, such as automatic refusal of an online credit application or e-recruiting practices without
any human intervention (GDPR, article 22). GDPR also integrates protection against “profiling”,
which consists of any form of automated processing of personal data evaluating the personal
aspects relating to a natural person, in particular, to analyze or predict aspects concerning
the data subject’s performance at work, economic situation, health, personal preferences
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or interests, reliability or behaviour, location or movements, where it produces legal effects
concerning him or her or similarly significantly affects him or her. This definition matches the
kind of prediction made by machine learning models. In contrast to GDPR, Bill C-11 ignores
and does not discuss the issue of profiling.

In the GDPR, decision-making based on such processing, including profiling, is exceptionally
allowed when expressly authorized by Union or Member State law to which the controller is
subject, including for fraud and tax-evasion monitoring and prevention purposes conducted
in accordance with the regulations, standards and recommendations of Union institutions or
national oversight bodies and to ensure the security and reliability of a service provided by the
controller, or necessary for the entering or performance of a contract between the data subject
and a controller, or when the data subject has given his or her explicit consent (GDPR, article
22.2). When these three exceptions apply, there is a tension between fairness and privacy in
these particular cases.

Recital 71 of the GDPR, gives more details about profiling by machine learning, which
confirms the convergence between fairness and privacy:

“In order to ensure fair and transparent processing in respect of the data subject,
taking into account the specific circumstances and context in which the personal
data are processed, the controller should use appropriate mathematical or statisti-
cal procedures for the profiling, implement technical and organisational measures
appropriate to ensure, in particular, that factors which result in inaccuracies in
personal data are corrected and the risk of errors is minimised, secure personal data
i a manner that takes account of the potential risks involved for the interests and
rights of the data subject and that prevents, inter alia, discriminatory effects on
natural persons on the basis of racial or ethnic origin, political opinion, religion
or beliefs, trade union membership, genetic or health status or sexual orientation,
or that result in measures having such an effect. Automated decision-making and
profiling based on special categories of personal data should be allowed only under
specific conditions.”

Privacy impact assessment could be extended to other ethical issues. The provisions
about data protection impact assessment are also a way of convergence between fairness and
privacy. Bill C-11 does not clearly provide an obligation to conduct a data protection impact
assessment and only states that “every organization must implement a privacy management
program that includes the organization’s policies, practices and procedures put in place to
fulfill its obligations under this Act, including policies, practices and procedures respecting”.
In comparison, the GDPR enacts that “where processing operations are likely to result in a
high risk to the rights and freedoms of natural persons, the controller should be responsible for
the carrying-out of a data protection impact assessment to evaluate, in particular, the origin,
nature, particularity and severity of that risk” (GDPR, article 35).
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As indicated in the Guidelines of the Article 29 Data Protection Working Party on Data
Protection Impact Assessment (DPIA) and determining whether processing is “likely to result in
a high risk” for the purposes of Regulation 2016/679, the reference to “the rights and freedoms’
of data subjects primarily concerns the rights to data protection and privacy but may also
involve other fundamental rights such as freedom of speech, freedom of thought, freedom of
movement, prohibition of discrimination, right to liberty, conscience and religion. The Data
Protection Impact Assessment is an Algorithmic Impact Assessment that allows considering
some values of fairness, such as equity and non-discrimination in a machine learning system.

)

5.4 Tensions

Measuring and improving fairness often requires access to sensitive attributes.
The first tension with privacy is that implementing fairness requires access, in most cases, to
sensitive attributes. Blocking sensitive information is very rarely conducive to fair models.
Indeed, to build fair models, it is often necessary to collect sensitive information on individuals
such as gender, race and age, as fairness-aware machine learning algorithms require to have
this information on a wide range of sensitive data to inspect models [TEFVH20, [Aga20]. This
inevitably introduces a privacy risk when training those models due to the collection of sensitive
data [VBI7, JKM™ 19, KGK™1§].

Thus, the main challenge is (1) to design fair models without collecting unnecessary sensitive
attributes that pose risks for individuals and (2) to prevent the data collected from being
disclosed. For example, when training a recidivism prediction application, participation in
the training data (e.g., as revealed through a membership inference attack) means that an
individual has committed a crime — which is sensitive information. Therefore, fairness and
membership privacy are both needed for the use of machine learning to be ethical [CS20].

Privacy and anti-discrimination laws can collide. There is a tension between direct
and indirect discrimination in machine learning under anti-discrimination law [Cof19]. For
instance, a classifier could illegally disadvantage a protected category, but ignoring data about
protected categories can also lead to indirect discrimination. Suppose a machine learning
algorithm is “race-blind” (i.e., the race attribute is removed from the data) to avoid direct
discrimination. In that case, it may be impossible to determine whether the output is indirectly
discriminatory on the basis of race [WMR21]. Using the information on membership of a
protected category to treat its members differently could give rise to a direct discrimination
challenge (which the law forbids), but just using race in predicting recidivism should not by
itself do this, as how the algorithm employs the racial classification matters [Hel20].

This tension forms a paradox in regulating information to prevent algorithmic discrimination:
“To avoid disparate treatment, the protected category attributes cannot be considered but to
avoid disparate impact, they must be considered.” [Cof19]. Thus, sensitive attributes must
be considered in the training process to avoid proxy discrimination [PS19]. Otherwise, the
challenge of blocking sensitive attributes to prevent discrimination is identifying and blocking
an endless list of proxies for legally protected categories, which raises two problems [Cof19].
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The first problem is that one may never cease to find attributes that are predictive of each
other, and one may not know in advance which those proxies are. The second problem is
that those proxies could also contain valuable and legitimate information. Thus, blocking
them may reduce accuracy and be self-defeating by reducing the ability to detect bias. Other
recent studies have shown that differentially-private models have a larger drop of accuracy on
underrepresented subgroups [BS19).

Possible remediations. Complying with the principles of data minimization and purpose
limitation of data protection law (even in jurisdictions in which they are not mandated) can
reduce these risks and the consequent tension between privacy and fairness. Another method
is to have the data stored by a trusted third party [VB17|. However, while this might help
appease users in that they are giving their data to a trusted entity in lieu of those that
employ the algorithms, they are still sharing this sensitive data. This prompts privacy concerns
that models might still be vulnerable to privacy attacks [JKMT19|. Employing differential
privacy [DMNS06, DR 14] has been proposed as a mitigation strategy to address this |JKM™19]
although others suggest that it is still vulnerable to state-of-the-art inference attacks [JEL9].

Jointly achieving privacy and fairness without using sensitive attributes. As we
mentioned previously, removing sensitive attributes rarely leads to a reduction in discrimination
due to proxies [PS19]. However, researchers have proposed methods for pre-processing data,
anonymizing or encrypting sensitive attributes to achieve fairness [KC12, KGK™18, [ML20)].
The relation of pre-processing methods to privacy can be described as follows: “since both
fairness and privacy can be enhanced by removing or obfuscating the sensitive information, with
the adversary objective of minimal data distortion” [PS20]. This measure can simultaneously
increase privacy and fairness [Cof19].

Another line of work concerns the design of techniques that avoid using sensitive attributes
by implementing the Rawlsian Max-Min fairness principle [Raw01], which consists of maximizing
the utility for the most disadvantaged group. These techniques can be categorized into two
categories depending on how the most disadvantaged group is taken into account without
using sensitives attributes, namely, distributionally robust optimization (DRO) [HSNLI1S8| and
adversarial reweighted learning (ARL) |[LBCT20]. DRO-based techniques implement fairness
by minimizing the worst-case training loss over a set of test distributions chosen around the
training distribution and aiming to mimic the protected groups one may encounter in reality.
On the other hand, ARL-based techniques implement fairness by improving the performances of
a model on computationally-identifiable subgroups [HJKRRIS8|. More precisely, the approach
consists of a minimax game between a learner that seeks to optimize the training loss and an
adversary that seeks to find computationally-identifiable regions with high loss and improve
the performances of the learner on these regions. Another practical solution to deal with
the direct and indirect discrimination paradox explained above is to control a dependent
attribute |[KGK™18, [TTKIS].

There are also legal approaches to the paradox, such as data minimization and privacy
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by design. Thus, law can help in making algorithms more responsible and less discrimina-
tory, meaning that privacy protection can contribute to the objectives of antidiscrimination
law [Cof19, Ish19]. However, an adversary can still infer private information, including the
sensitive attribute of the user, from the output of machine learning models trained with fairness-
enhancing techniques that are agnostic to the sensitive attribute [JKM™19|. Thus, approaches
that do not use the sensitive attributes can be viewed as a form of data minimization and will
need to be co-designed with differential privacy to offer protection against privacy inference
attacks. For instance, a recent work has achieved this objective by combining secure multiparty
computation with differential privacy |JKM™19).

6 Privacy and Transparency

6.1 Conceptions of transparency

The proposed Consumer Privacy Protection Act (Bill C-11, reforming PIPEDA) defines an
automated decision system as any technology that assists or replaces the judgement of human
decision-makers using techniques such as rules-based systems, regression analysis, predictive
analytics, machine learning, deep learning or neural nets. Regarding the risks and issues for
data protection, specific rules have to be enacted. Bill C-11 states that “If the organization has
used an automated decision system to make a prediction, recommendation or decision about
the individual, the organization must, on request by the individual, provide them with an
explanation of the prediction, recommendation or decision and of how the personal information
that was used to make the prediction, recommendation or decision was obtained” (article
63(2)).

The GDPR also requires that suitable safeguards are enacted in many cases, which should
include specific information to the data subject and the right to obtain human intervention, to
express his or her point of view, to obtain an explanation of the decision reached after such
assessment and to challenge the decision. These safeguards show that the aim of the legislator
is to preserve a certain level of data protection, even when the use of machine learning is not
fair but legitimized by certain objectives. However, in this case, both transparency and privacy
are called into question, and there is finally no tension between these two values. The tension
is located between these two values taken together and the objectives of general interest.

6.2 Transparency in machine learning

Techniques to promote transparency in machine learning can be broadly categorized into three
families. In particular, transparent-box design techniques promotes the design of inherently
interpretable models (e.g., linear models, decision trees, rule lists or rule sets) while post-hoc
explanation techniques [GMR18| aim at explaining the outcomes of black-box models (e.g.,
deep neural networks or ensemble methods) through an interpretable surrogate model. In
addition, hybrid approaches [Wanl9, [PWH20| promote the co-training of black-box models and
their interpretable substitutes. The main objective of hybrid approaches is to help decision-
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makers select the model to be used for a prediction task in full consideration of the different
alternatives’ performance trade-offs (i.e., interpretable as well as black-box models).

Transparent box design focuses on the problem of designing models that are human-
understandable. The notion of understandability is often expressed through criteria such as
simulatability, decomposability and algorithmic transparency |[Lip1§|. In a nutshell, simulata-
bility corresponds to the possibility for a model to be described syntactically and contemplated
at once by a human, while composability refers to the fact that all the components of the model
(e.g., attributes, antecedents of rule lists or weights of linear models) are understandable by a
human. Finally, algorithmic transparency can be defined by the ability to prove the correctness
of the training process (e.g., convergence to a unique well-behaving model).

Post-hoc explanation aims at explaining how black-box ML models produce their outcomes
through different forms of explanations |[GMR™18, I ADRDS™20|. In particular, current post-
hoc explanation techniques include global explanations, local explanations, example-based
explanations and gradient-based attribution techniques. Global explanations explain the
complete logic of the black-box model by training a surrogate model that is interpretable by
design (e.g., linear models, rule-based models or decision trees) while maximizing its fidelity
with respect to the predictions of the black-box. Local explanations only aim at explaining a
single decision by approximating the black-box in the vicinity of the input profile through an
interpretable model. Example-based explanations produce particular data points to explain
either the black-box model’s behaviour or its training data distribution. Finally, gradient-based
attribution techniques leverage the inputs’ gradients to provide a relevance score of the features
with respect to the values outputted.

6.3 Convergence and tension

Transparency is a fundamental requirement of privacy legislation. From a legal
point of view, a convergence exists between transparency and privacy regarding the fact that
any personal data processing should be transparent to individuals with respect to how personal
data concerning them are collected, used, consulted or otherwise processed and to what extent
the personal data are or will be processed |[Cof21l [CS19|. The principle of transparency requires
that any information and communication relating to the processing of those personal data be
easily accessible and easy to understand and that clear and plain language be used. Especially,
individuals should be made aware of risks, rules, safeguards and rights in relation to the
processing of personal data and how to exercise their rights in relation to such processing,
including machine learning. The principle of transparency means that transparent information,
communication and modalities for the exercise of the rights of the data subject should be
fulfilled. The convergence is perfect as transparency is the preferred method to guarantee the
respect of privacy rights of individuals.

As for Al to manipulate or influence individuals, we can note that the proposed regulation on
Al published in April 2021 by the European Commission provides specific rules of transparency
regarding certain manipulation processes such as “deep fakes”. Article 52(3) states that: “Users
of an Al system that generates or manipulates image, audio or video content that appreciably
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resembles existing persons, objects, places or other entities or events and would falsely appear
to a person to be authentic or truthful (‘deep fake’), shall disclose that the content has been
artificially generated or manipulated”.

Moreover, some Al system are prohibited. Article 5(1) prohibits: “The placing on the
market, putting into service or use of an Al system that deploys subliminal techniques beyond
a person’s consciousness in order to materially distort a person’s behavior in a manner that
causes or is likely to cause that person or another person physical or psychological harm”.

Explanations provide additional information that privacy attacks can exploit. Pro-
viding explanations necessarily reveal more information than simply outputting the prediction
of the model. In particular, black-box models have been shown to be vulnerable to inference
attacks exploiting post-hoc explanations. In this setting, the adversary has access to both the
predictions and the explanations of the target black-box model. For instance, recent works have
shown that gradient-based explanation can be used to perform high-fidelity model extraction
on two-layer neural networks [MSDHI9| or that explanation techniques can be leveraged to
perform membership inference as well as near-complete dataset reconstruction|SSZ19|. Further,
Aivodji, Bolot and Gambs [ABG20] have demonstrated that counterfactual explanations can
be used to perform model agnostic and high-fidelity model extraction under low budget in
terms of queries to the black-box.

This vulnerability of black-box models to inference attacks is often connected to over-fitting,
which describes a situation in which the error of a model on its training is significantly lower
than its error on the test set. This corresponds to a situation in which the model has memorized
examples of the training set but is not able to generalize to new instances such as ones from the
test set. Most membership inference attacks exploit this phenomenon to verify if a particular
profile belongs to a target model’s training set by observing the confidence in its prediction.
Intuitively, models designed using transparent box approaches might also seem vulnerable
because their descriptions are more likely to be public information. However, in practice, they
are less prone to privacy inference attacks than complex black-box models, usually because
these models’ simplicity makes them less able to memorize examples.

6.4 Case study 1: Model reconstruction from counterfactual explanations

In this section, we present a concrete example of tension between privacy and explainability
in which an adversary leverage counterfactual explanations to perform a model extraction
attack [ABG20].

6.4.1 Model extraction

As briefly introduced in Section [3.2] a model extraction attack is an privacy attack in which
an adversary A obtains a surrogate model S 4 that is similar to the targeted model B. The
precise meaning of the similarity depends on the adversary’s objective, while the success of the
attack depends on the adversary’s capabilities.
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Adversary objective. Previous works [ASJT19, IJCB™20] have considered two main
categories of model extraction attacks depending on the goal of the adversary, namely accuracy-
based and fidelity-based model extraction attacks. In accuracy-based model extraction attacks,
also known a theft-motivated model extraction attacks |[JCBT20], the adversary aims at learning
a surrogate model S 4 whose accuracy is as close as possible to that of the target’s model B.
Typically here, model extraction provides a financial benefit to the adversary as he can use the
surrogate model as a substitute for the commercial API of his target. In fidelity-based model
extraction attacks, also known as reconnaissance-motivated model extraction attacks |[JCB™T20),
the objective of the adversary is to build a surrogate model S 4 maximizing the fidelity with
the target’s model B. The fidelity Fid(S 4) of the surrogate is defined as its accuracy relative
to B over a reference set X, C X [CS96]:

Fid(Sa) = > USalx) = B(x)). (1)

7"| zeX,

In this context, a model extraction attack is often a first step towards mounting other attacks
such as a model inversion attacks [FLJ™ 14, [FJR15] or adversarial examples discovery |[SZS™13
GSS14, PMG™171].

A particular case of fidelity-based model extraction attack, known as functionally equivalent
extraction, occurs when the adversary is able to build a surrogate S 4 matching the predictions
of the target’s model B over the whole input space (i.e., Vo € X, S4(x) = B(x)). As pointed
out in [JCB™20], functionally equivalent extraction attacks require model-specific techniques.
In contrast, both accuracy-based and fidelity-based model extraction attacks generally rely on
the flexibility of learning-based approaches, making them more generic. In the latter case, the
target’s model B is used as a labeling oracle by the adversary.

Adversary capabilities. Following the taxonomy introduced in |[JCBT20], we describe
the adversary capabilities around three axes, namely the domain knowledge, the deployment
knowledge and the model access. Domain knowledge corresponds to the adversary’s prior
information on the task of the target model. For learning-based approaches, a common
assumption is that the adversary knows as much about the task as the designer of the target
model. Deployment knowledge refers to the adversary’s knowledge of the target model’s
characteristics (e.g., architecture, training dataset, training algorithm, hyperparameters, ... ).
Finally, the model access indicates how the adversary interacts with the target’s model and
the form of information extracted from these interactions. More precisely, this includes both
the number of queries the adversary is allowed to make to the target’s model and the type of
the model’s output (e.g., labels, probabilities, gradients, counterfactual explanations,...).

6.4.2 Counterfactual explanation

Counterfactual explanations [WMR17, [LLS™T17, LLM™17, [TSHLIT, GCV ™18, [Rus19, [USL19,
JKV 19, [PBK20, MST20, KBBV20] are data instances that are close to the input instance to
be explained but whose model predictions are different from that of the input instance. More
precisely, given a black-box model B, an original input g, its predicted outcome yo = B(zo)
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\ +——— ML model decision’s

Original class: Loan denied \ boundary Desired class: Loan approved

N

\ - hours_per_week: 20 -> 45
. \‘\ . - education: hs_grad -> masters

Original input \ — Counterfactual examples

\ '4—‘ - occupation: service -> white_collar

Figure 2: Illustration of a counterfactual explanation scenario. Given an original instance
for which the model predicts the loan denied class, a counterfactual explanation framework
provides different instances that are close to the original one but belong to the desired class
(loan approved here). An individual asking for an explanation can thus see which aspects of his
profile he may try to change to yield the desired outcome.

and a desired outcome y # yo, a counterfactual explanation c(x¢) for the input xq is usually
obtained by solving the following optimization problem:

c(xg) = arglcmin L(B(c),y) + |c — x|, (2)

in which L(B(c), y) ensures that the obtained counterfactual ¢(x) has a different prediction from
that of the original input xy while the second term |c — | helps in obtaining a counterfactual
close to the original instance. Figure [2| illustrates a counterfactual explanation scenario while
Table [I] provides concrete examples of counterfactual explanations obtained on a real world
dataset, namely Adult Income [FA10Q].

‘Agc Workclass Education Marital status Relationship Occupation Race Gender Capital gain Capital loss Hours per week

Original input . 33 Private Assoc-acdm Married Own-child Professional ~ White  Female 0 0 40
(outcome: < 50K)

Counterfactuals Doctorate - - - - 33703 - 39
(outcome: > 50K) - - - White-collar - - 99985 4333 -

Table 1: Examples of counterfactuals obtained on Adult Income [FA10] dataset. The task is
to predict whether an individual earns more than 50,000$ per year. The top row corresponds
to the different features of the input instance. The second row depicts the data instance
to be explained as well as its original outcome. Finally, the last two rows are examples of
counterfactuals generated to explain the original input. Dashed marks refer to features that
are unchanged.

Diverse counterfactuals. To be more actionable, counterfactual explanation frameworks
often generate for each input instance, several counterfactuals covering a diverse range of
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possibilities instead of the single closest one [WMR17|. Providing diverse counterfactuals allows
users to decide the most efficient way by which they can influence their profile to obtain the
desired outcome. At the same time, on the privacy side, it also leaks more information to the
adversary and enables him to mount a more powerful attack. In this study, we rely on the DiCE
framework [MST20] to implement the explanation API of the target models. Nonetheless, the
proposed attack is generic enough to work with any counterfactual explanation framework.
In a nutshell, DiCE aims to find valid and actionable counterfactual examples by solving
the following optimization problem:
Clao) = argmin 125, L(B(er), ) + 3 Sk o —
15--45Ck

—Xadpp_ diversity(cy, . .., ck), (3)

in which B is the black-box model, xq is the original input to be explained, y # B(xg) is the
desired outcome, ¢; is a counterfactual example and k is the number of counterfactuals to
return. The loss function L(B(c;),y) ensures that each of the counterfactuals has a different
outcome than that of the original input xy while |¢; — z¢| leads to the counterfactual being
close to the original input. Finally, dpp_diversity(-) is the diversity metric while A\; € R™ and
Ao € RT are the hyperparameters used to balance the proximity and diversity. More precisely,
the larger \; is, the closer the counterfactuals will be to to the query instance. Similarly, the
larger As is, the more diverse the counterfactuals return will be diverse.

Hereafter, we will investigate the success rate of explanation-based model reconstruction
with both single and diverse counterfactuals.

6.4.3 Model extraction from counterfactual explanations

In this section, we first frame the generic problem of explanation-based model extraction before
presenting the particular case of counterfactual explanation, which is our focus. Afterwards,
we describe the different adversarial models investigated in our work before describing their
corresponding model extraction attacks.

Problem formulation. As illustrated in Figure [3] in an explanation-based model extrac-
tion attack, the adversary leverages both the predictions and the explanations of the target
model to build the surrogate model.

Definition 1 (Explanation-based model extraction) Given a target model B, its predic-
tion API B(-) as well as its explanation API £(-), both available in a black-box setting, a set
of data points x1,...,xy, the explanation-based extraction attack consists in using both the
explanations and the predictions of the target model to build a surrogate S4 ~ B, using an
attack process Y(-).

In the particular context of counterfactual explanations, the explanation API £(-) returns for
each data point x; its corresponding counterfactual explanation c(x;) along with its associated
outcome 7;. In the case of diverse counterfactuals, the explanation API will return a set C(z;)
of counterfactual examples instead of a single one.
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Figure 3: Hlustration of a traditional model extraction attack and an explanation-based model
extraction. In the former, the adversary relies on the predictions B(z1), ..., B(x,) of the target
model B to build the surrogate model S4 using a process v (-), while in the later, the adversary
combines the predictions B(x1), ..., B(z,) and the explanations £(z1),...,E(xy,) of the target
model B to generate the surrogate S4 using another process ¢/(+).

6.4.4 Attack description

Adversary model. We are interested in a fidelity-based extraction attack (also called
reconnaissance-motivated extraction attack) in which the adversary A will rely on both the
predictions and the counterfactual explanations of the target model to conduct his attack.
Similarly to |JCBT20|, we will assume that the adversary knows as much about the task as
the designer of the target model in terms of domain knowledge. As for the model access,
the adversary will have black-box access to the target model’s predictions and counterfactual
explanations. We also assume a bound on the number of queries that the adversary is allowed to
make. Each query to the explanation API £(+) returns one or more counterfactual explanations
depending on the diversity criteria. Finally, for the deployment knowledge, we consider different
scenarios according to (1) the knowledge of the training data distribution, which can be known,
partially known (e.g., knowledge of the marginal distribution) or unknown, (2) the knowledge
of the target model architecture (known or unknown) and (3) the use of the training data by
the explanation algorithm (used or unused).

Attack strategy. To conduct his attack, the adversary first builds his attack set D 4
according to his knowledge of the distribution of the target model’s training data. Then, for each
data point x € D 4, he sends a query to both the prediction API B(-) and the explanation API
E(+) of the target model. Finally, A trains the surrogate model S 4 according to his knowledge of
the target model’s architecture, by using a transfer set Ta = {Da,B(D4)} UE(D 4) consisting
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of both the outputs of the prediction and explanation APIs.

In traditional model extraction attacks, the transfer set 74 of the adversary can be
imbalanced due to the unequal distribution of classes within the dataset. As a result, there
may be a significant difference between the class-based accuracy of the surrogate model S4 and
the target model B [ASJT19]. In contrast, counterfactual explanations-based model extractions
attack do not suffer from such limitations as the attack set is balanced by construction since
each instance is followed by its corresponding counterfactual explanation.

6.4.5 Experimental setting

In this section, we report on the performances of counterfactual explanations-based model
extraction attacks when evaluated on real datasets.

Datasets. We have conducted our experiments on three public datasets that are extensively
used in the FaccT (Fairness, Accountability, and Transparency) literature, namely Adult

Income [FA1Q], COMPAS [ALMKI6| and Default Credit [FA10).

e In a nutshell, the Adult Income dataset contains information about individuals collected
from the 1994 U.S. census. The dataset contains 48,842 individuals, each described by 11
attributes. The underlying classification task is to predict whether or not an individual
makes more than 50,0008 per year in terms of income.

e The COMPAS dataset gathers records from criminal offenders in Florida during 2013
and 2014. The dataset contains 7,214 individuals, each described by 8 attributes. The
classification task considered is to predict whether a subject will re-offend within two
years after being released.

e Finally, the Default Credit dataset is composed of information on Taiwanese credit card
users. The dataset contains 29,986 individuals, each described by 23 attributes, while
the classification task is to predict whether a user will default in his payments.

Evaluation metrics. Our main objective is to conduct a reconnaissance-motivated model
extraction attack. As such, we will use the fidelity metric as our primary evaluation metric for
the success of the attack. Nonetheless, we will also report on the accuracy of the surrogate.

Black-box models. Each dataset is split into three subsets, namely the training sets
(67%), the testing sets (16.5%) and the attack pools (16.5%). The black-box models are learned
on the training sets. The testing sets are used to evaluate (1) the accuracy of both black-box
models and surrogates models and (2) the fidelity of the surrogate model relative to the target
black-box model. The attack pools are used only for the scenario in which the adversary is
assumed to know the data distribution. For both Adult Income and COMPAS, the target
models are Multi-Layer Perceptrons (MLPs) with two hidden layers, with respectively 75 and
50 neurons. For Default Credit, the target model is a MLP with one hidden layer of 50 neurons.

For all the three target models, we have used the L1 regularization (with A = 0.001), the
RMSprop optimizer [THI12|, the rectifier activation function (ReLwu) for hidden layers, the
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Sigmoid activation function for output layers and train the models for 100 epochs. Table
summarizes the accuracy of the three black-box models on their training and test sets.

Dataset Training Set Test Set

Adult Income 85.36 84.70
COMPAS 69.00 66.30
Default Credit 81.10 80.70

Table 2: Performances of the black-box models. Columns report the accuracy of the black-box
models on their training set and test set.

Scenarios investigated. We consider five different counterfactual-based model extraction
scenarios, namely (S1) single counterfactual with known training data distribution, (S2) single
counterfactual with partially known training data distribution, (S3) single counterfactual with
unknown training data distribution, (S4) multiple counterfactuals with known training data
distribution and (S5) impact of the proximity and diversity metrics on the performances of
the model extraction. The first three scenarios are variants of the same setting in which the
explanation API only provides a single counterfactual explanation per query, but under different
assumptions on the adversary knowledge on the distribution of the training data of the target
model. The objective of the last two scenarios is to study the impact on the success rate of
the extraction attack of having access to multiple and diverse counterfactual explanations per
query.

For all five scenarios, the performances are evaluated according to the adversary’s knowledge
on the architecture of the target model and whether or not the explanation API uses the
training data. When the adversary does not know the target model’s architecture, we imagine
that typically the adversary will have a trial-and-error strategy in which different architectures
will be tried with the one maximizing the fidelity of the surrogate being kept at the end. In our
experiments, we simulate this situation with an adversary that tries 5 different architectures,
which we describe in Table[3] Remark that since the surrogate training is done offline once the
transfer set has been built, the adversary is only limited in its exploration by its computational
resources and the time he is willing to dedicate to this exploration. In particular, if he has
the sufficient resources, he might even use advanced techniques for exploring the space of
possible architectures such as Neural Architecture Search |[EMHI19] to maximize the fidelity of
the surrogate model.

Hereafter, we detail each of the five scenarios.

(S1) Single counterfactual with known training data distribution. In this sce-
nario, the adversary directly uses the attack pool as his attack set D 4. More precisely,
he selects a subset Q4 of D4 to query the target model and construct his transfer set
Ta = {QAa,B(Qa)} UE(QA). In the experiments conducted, we have considered different
values |@Q 4| € {100, 250,500, 1000} for the number of queries to study its effect on the attack’s
performance. For each value of |@ 4|, the experiment is repeated over 10 random sampling
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of Q4 and the average fidelity and accuracy of the surrogate are reported. Additionally, we
compare the performances of the surrogate with a baseline model trained using the complete
attack pool D4 and the predictions B(D 4) of the target model.

(S2) Single counterfactual with partially known training data distribution. Here,
the adversary is assumed to know the marginal distribution of the attributes of the training
set. To perform his attack, in this scenario, the adversary builds an attack set D 4, composed
of data points sampled according to the marginal distribution of the attributes. The rest of
the attack is similar to the process described above for (S1).

(S3) Single counterfactual with unknown training data distribution. This sce-
nario is similar to (S2) except that the distribution of the training data of the target model is
unknown. As a consequence, the attack set D 4 is generated simply by uniformly sampling data
points from the input space. Clearly, this can sometimes lead to the generation of unrealistic
data points.

(S4) Multiple counterfactuals with known training data distribution. In this
scenario, the same configuration used in (S1) is considered, but the number % of counterfactuals
provided by the explanation API is increased. More precisely, the attack performances are
studied for k in the range {3,5,7}. For each of these settings, the default values for the
proximity and diversity hyperparameters are used (i.e., Ay = 0.5 and A9 = 1.0).

(S5) Impact of the proximity and diversity on the performances of the model
extraction. In this scenario, the impact of proximity and diversity on the surrogate model’s
performance is explored. For the sake of simplicity, we focus on the setting in which the adversary
knows the data distribution and the training data is used by the explanation API since the
results are similar in both cases. We set |Q 4| = 1000, £ = 5, \; € {0.5,1.0,1.5,2.0,2.5,3.0}
and A\ € {1.0,1.5,2.0,2.5,3.0}.

All our experiments were run on an Intel Core i7 (2.90 GHz, 16GB of RAM) laptop.

Hidden layers Hidden activation Output activation Loss Optimizer Regularizer Epochs
Arch 1 100, 50 ReLu Sigmoid Binary cross-entropy ~ RMSprop L1(0.001) 100
Arch 2 100, 50 ReLu Sigmoid Binary cross-entropy Adam L1(0.01) 20
Arch 3 200,100, 50,25 ReLu Sigmoid Binary cross-entropy ~ RMSprop L;(0.01) 20
Arch 4 200,100, 50, 25 ReLu Sigmoid Binary cross-entropy Adam L1(0.01) 20
Arch 5 100, 75,50 ReLu Sigmoid Binary cross-entropy ~ RMSprop L1(0.001) 100
Arch 6 100, 75, 50 ReLu Sigmoid Binary cross-entropy Adam L;(0.01) 20

Table 3: Architectures of the models used across the experiments. For both Adult Income
and COMPAS datasets, we use Arch 5 as the target model architecture, the adversary uses
the remaining architectures as candidate architectures when the target model architecture is
unknown. For the Default Credit dataset, Arch 1 is used as the target model architecture
and the remaining when the target model architecture is unknown.
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Target model Training data used Baseline
Dataset Architecture 100 Queries 250 Queries 500 Queries 1000 Queries Model
by ()
yes 89.02/81.05  92.06/82.94  93.21/83.26  94.22/83.68
known 10 89.39/81.47  91.78/82.87  92.17/82.74  94.84/83.88 81.28/76.06
Adult Income
} yes 89.27/81.11  92.42/83.18  93.62/83.52  94.65/83.88
unknown 1o 88.09/81.24  02.21/83.05  93.40/83.28  94.80/83.97 | SL28/76.00
yes 87.13/66.19  91.29/67.30  92.17/67.11  92.85/66.97
known ’ . o o o 71.42/61.09
95 C 03 (@ 5
COMPAS 1o 87.91/65.81  89.57/65.86  92.62/66.49  93.92/66.50
! yes 88.13/66.50  90.81/67.26  92.00/67.16  92.36/66.90 )
unknown 1o $9.12/66.16  90.08/66.03  92.91/66.66  93.43/66.49 | S004/6495
yes 97.09/80.22  97.93/80.55  98.31/80.63  98.57/80.52
known 88.52/77.86
Default Credit no 97.15/80.20  97.77/80.34  97.77/80.34  98.28/80.48
yes 97.08/80.12  97.99/80.57  98.39/80.58  98.39/80.58 _
unknown no 96.00/80.15  O7.52/8038  07.00/804  98.03/8043 | S502/T786

Table 4: Performances (fidelity/accuracy) of the model extraction attack in scenario (S1)
for Adult Income, COMPAS, and Default Credit datasets. For each of the query scenarios,
we report on the performances (averaged over 10 extraction attacks) of the surrogate model.
The column of the baseline model correspond to the fidelity /accuracy of the surrogate model
obtained using the whole attack pool D 4 to conduct a traditional model extraction attack.

6.4.6 Experimental results

(S1) Single counterfactual with known training data distribution. Table[{]summarizes
the results obtained for scenario (S1). The attack is evaluated on Adult Income, COMPAS and
Default Credit datasets. Overall, for all these three datasets, we observe that with only 250
queries, our attack reaches a fidelity of 90%. This fidelity is higher than that of the baseline,
which is a traditional model extraction attack with 8059 queries for Adult Income, 1192 queries
for COMPAS and 4948 queries for Default Credit. We also observed that as the number of
queries increases, both the fidelity and the accuracy of the surrogate also improve. With only
1000 queries, our attack already reaches a fidelity of 94% on Adult Income, 93% on COMPAS
and 98% on Default Credit and an accuracy matching that of the target model (as measured
on its test set) on all three datasets. Moreover, an interesting finding of our study is that the
knowledge of the target model architecture and the use of the training data by the explanation
API does not lead to a significant advantage with respect to the attack’s success.

(S2) Single counterfactual with partially known training data distribution. Ta-
ble [5| displays the results obtained for scenario (S2). Here, for the sake of simplicity, we have
only performed the experiments on the Adult Income dataset. The results demonstrate that
an adversary who only knows the features’ marginal distribution can still perform a powerful
model extraction attack. In particular, with 1000 queries, the surrogate model S 4 still reaches
a fidelity of 93% and an accuracy close to that of the target model on the test set.

(S3) Single counterfactual with unknown training data distribution. Table [g]
describes the performance of our attack for scenario (S3). Similarly to (S2), we focus on
the Adult Income dataset. Overall, the results show that even without knowing the data.
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Tareet model Training data used
Dataset e 100 Queries 250 Queries 500 Queries 1000 Queries
Architecture
by £()

Known yes 86.19/79.47 89.05/81.37 91.70/82.84 92.95/83.30
Adult Income no 86.48/79.82 89.54/81.77 91.74/82.84 92.60/83.20
unknown yes 86.22/79.46 90.01/81.84 92.14/83.12 92.97/83.4
no 86.22/79.83 90.02/81.94 92.13/83.09 93.54/83.65

Table 5: Performances (fidelity /accuracy) of the model extraction attack in scenario (S2) for
Adult Income. For each of the query scenarios, we report on the performances (averaged over
10 extraction attacks) of the surrogate model.

Tareet model Training data used
Dataset g . 100 Queries 250 Queries 500 Queries 1000 Queries
Architecture
by C(-)

Kknown yes 82.30/75.90 83.28/77.12 84.46/78.25 85.06/78.58
Adult Tncome no 82.31/76.11 82.63/76.78 83.74/77.57 83.74/77.57
unknown yes 81.98/75.48 84.31/77.38 85.75/78.79 85.75/78.79
no 81.58/75.59 83.37/77.15 84.60/78.28 84.61/78.25

Table 6: Performances (fidelity/accuracy) of the model extraction attack in scenario (S3) for
Adult Income. For each of the query scenarios, we report on the performances (averaged over
10 extraction attacks) of the surrogate model.

distribution, the adversary can build a surrogate model performing better than the one obtained
using a traditional extraction attack with 8x more labels and with full knowledge of the data
distribution. However, compared to the fidelity of counterfactual-based extraction attacks with
partial knowledge (respectively full knowledge) of the data distribution, the surrogate’s fidelity
decreases by 7.79% (respectively 9.14%).

(S4) Multiple counterfactuals with known training data distribution. Figure
describes the impact of the number of counterfactuals provided for each query on the per-
formance of the extraction attack. Overall, we can observe that the fidelity of the surrogate
improves as the number of counterfactuals increases. Besides, the performances of the surrogate
model when the adversary does not use the architecture of the target model (Figures [4c{and
are slightly better than the performances of the surrogates trained using the same architecture
as the target model (Figures 4al and . These results also corroborate our previous findings
that the target model architecture’s knowledge does not provide a significant advantage to the
adversary. Note that if the training data is used by the explanation API, this seems to give
the adversary a small advantage in the lower query budget regime (|@Q 4| < 500). However, in
higher query budget regimes (|Q.4| > 500), it does not provide a significant advantage to the
adversary.

(S5) Impact of proximity and diversity on the performance of the model ex-
traction attack. Figure [5| summarizes the results obtained for scenario (S5) on the Adult
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Figure 4: Performances (i.e., fidelity) of the model extraction attack in scenario (S4) for Adult
Income. Results demonstrate the impact of the number of counterfactual explanations per
query on the extraction attack’s fidelity.
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Figure 5: Performances (fidelity) of the model extraction attack in scenario (S5) for Adult
Income dataset. The results show the impact of the proximity and the diversity metrics on the
fidelity of the surrogate.

Income dataset. Overall, the higher we set the constraints, the more likely the surrogate found
will be of high fidelity. Similar to our previous observations, the knowledge of the target model
architecture does not provide a significant advantage.

Summary of the results. Consistently across the experiments, we have observed that
counterfactual explanations can be leveraged by an adversary with a limited query budget to
perform high-fidelity and high-accuracy model extractions. In particular, when the adversary has
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partial or complete knowledge of the data distribution, he can obtain a high-fidelity and a high-
accuracy surrogate with only 500 queries. In contrast, when the data distribution is unknown,
the surrogate performances are lower as expected. However, even in this restricted setting, the
surrogate obtained with our attack still performs better than the surrogate generated using
traditional model extraction attacks with full knowledge of the data distribution. Additionally,
experiments with multiple and diverse counterfactuals demonstrate that this requirement leads
to better performances of the model extraction attacks.

7 Privacy and Accountability

There is a high level of convergence and a few tensions between policies and organizational
practices that would enforce privacy and improve accountability in machine learning. More
accountability seems generally desirable, but it is still unclear what are the best policies or
organizational practices to held people more accountable when they develop or use machine
learning applications, or how accountability should be specified.

7.1 Conceptions of accountability

Accountability is often used as an umbrella term for various features or desirable aspects of
our social arrangements, including transparency, responsibility, answerability, attributability,
and the proper auditing and sanctioning of algorithmic decision-makers [Sholll [Smil2, [Esh14].
However, there is often a lack of distinctions between those concepts. We define accountability,
or the state of being accountable, as follows: there is accountability when an individual or a
group of individuals A provides a justification or an explanation about O — a political decision,
a policy, the functioning of a new product or service, etc. — to another individual or group
B. The individual or group B that will receive the explanation must have some sanctioning
power over A in the sense that B must be able to impose a punishment or corrective actions if
it considers the account to be unsatisfactory [Binl8) [Bov10), Mul00].

This definition is inclusive and captures many types of accountability that can be specified
differently [Wiel [Wie]. For instance, various groups of individuals can be considered accountable
to different forums: an elected representative may be accountable to its constituents, a
corporation may be accountable to its shareholder, and so on. People may also have different
expectations about O, the object of accountability and different types of sanctioning power
may be established for B. Typical mechanisms of accountability include elections, independent
review processes, an ombudsman position within an organization or a public agency [AdL |Gil]
and various internal supervisory procedures [QM].

7.2 Accountability in machine learning

Many authors have pointed out the fact that the accountability mechanisms and legal standards
that govern decision processes in machine learning have not kept pace with Al technology [ACIS,
Binl8, KBET16|. To name a few examples, Reisman, Schultz, Crawford and Whittaker [RSCW]
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claim in a popular report that “public agencies urgently need a practical framework to assess
automated decision systems and to ensure public accountability”. The Fairness, Accountability,
and Transparency (FAccT) movement gained momentum in the machine learning community
given the challenges of ensuring non-discrimination with AI applications, as well as due
process, and understandability in decision-making [DFA™| [DF|. Calls for regulation and
auditing mechanisms, for standards, codes of conduct, certifications, and data protection
impact assessments for algorithmic accountability in organizations, for the development of
technical methods to ensure explainability as a tool to achieve accountability have grown
significantly in the past years in diverse streams of work.

Various questions or challenges need to be addressed before there is more accountability
in machine learning. These questions are both conceptual and practical. For instance, who
should be made more accountable: the organization that produce or use machine learning, or
the legislators that should introduce new regulations? In addition, as current tools available
to courts and legislators were mainly designed to oversee human decisions, is there a need for
additional legal provisions to deal with new technological developments?

There is also an issue with the burden of proof when decisions are made by machine learning
models. Indeed, an ethical challenge related to accountability is the “concept of distributed
moral responsibility” [Flo16] or “diluted responsibility” [Chal7| or, stated in other words, the
problem of the multiple hands. As Floridi [Flo16] said it: “|T]oo often “distributed” turns into
“diffused”: everybody’s problem becomes nobody’s responsibility”.

Another set of questions concerns the type of forum that should receive the accounts from
private and public organizations, the type of explanation that should be provided, and the proper
sanctioning power for this forum. In the absence of any control or sanction mechanisms and /or
regulatory body directly entitled to ensure accountability in the field of machine learning, in the
absence of any kind of right to explanation, and in the absence of any ethical and /or legal basis
that would be required to justify demands for explanations about algorithmic decision-making,
on which basis people affected by algorithmic decisions could claim for justifications?

Accountability for content moderation purposes. The difficulty with AI for content
moderation purposes is that these kinds of tools are implemented by companies like Google
or Facebook whose processes are not transparent. The criteria for moderation are not known
and, as more and more governments seek to make them responsible for illegal content, the
tendency is to over-moderate content, (sometimes where the content is only “inappropriate”)
at the expense of freedom of expression. There are also tendencies to delete content from
certain communities or opinions and there is a total lack of transparency and evidence on the
subject. Moreover, even if several governments try to make these companies more accountable,
the “moderation subject” is not universal as the freedom of speech is differently protected and
limited, especially in the US when the Big Tech are American companies.
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7.3 Convergences

Legal obligations of providing accountability under privacy legislations. From a
legal approach, privacy and accountability may converge if one considers that privacy laws may
themselves incorporate accountability obligations. Therefore, compliance with such legislation,
such as the GDPR, implies documenting the respect of privacy rules, and this obligation
to document can be added to similar obligations stemming from other legislation, such as
banking legislation, for example. Thus, the GDPR integrates accountability tools, such as
the data controller’s obligation to carry out an assessment of the impact of the envisaged
processing operations on the protection of personal data (Data Protection Impact Assessment).
Another example is that each controller shall maintain a record of processing activities under
its responsibility. Moreover, compliance with accountability obligations can be done while
respecting privacy legislation, as it is most often not required to reveal personal data.

Another challenging question related to accountability concerns the increasing use of
privacy-invasive inferences and thus, the justification for the use of inferences. Wachter and
Mittelstadt [WM19] argue that machine learning draws non-intuitive and unverifiable inferences
and predictions about the behaviors, preferences, sensitive attributes, and private lives of
people, and that these inferences create new opportunities for discriminatory, biased, and
privacy-invasive profiling and decision-making. To close the various accountability gaps that
exist with new Al technologies, and to promote justification of inferences, they suggest a ‘“new
right to reasonable inferences”. This new right would be “applicable to ’high risk’ inferences
that cause damage to privacy or reputation, or have low verifiability in the sense of being
predictive or opinion-based while being used for important decisions. This right would require
ex-ante justification to be given by the data controller to establish whether an inference is
reasonable”.

According to Wachter and Mittelstadt [WM19], this disclosure would address “(1) why
certain data are normatively acceptable bases to draw inferences; (2) why these inferences are
normatively acceptable and relevant for the chosen processing purpose or type of automated
decision; and (3) whether the data and methods used to draw the inferences are accurate and
statistically reliable. An ex-post mechanism would allow data subjects to challenge unreasonable
inferences, which can support challenges against automated decisions exercised under Article
22(3) of the GDPR”.

This type of disclosure appears to be an interesting step towards the respect of individual
and group privacy as de-identification is still imperfect. Indeed, de-identified data can still be
identifiable in the absence of regulations or technical safeguards to prevent re-identification
of de-identified information. Not only de-identified data can reveal identifiable individual
information but can also reveal harmful trends and information about members of groups if for
example those de-identified data when processed by an Al system is used in a discriminatory
manner, even unintentionally. Thus, the regulation of de-identified data appears essential for
preventing Al bias [Paul7, [JDHET19L [Cof19].

However, while this “right to reasonable inferences” is an interesting concept in theory,
it appears to be difficult to implement in a legal text and in practice. Indeed in law, vague
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notions such as “reasonable” are subject to interpretation and this will be the case here even
more so since inferences are not always visible and traceable in the absence of transparency.
What should we consider as “reasonable”, seems difficult to pinpoint in abstracto as it depends
of the context. Thus, this notion leaves too much room for uncertainty in Al inferences to
encourage its consecration in law.

Moreover, the concrete implementation of this proposal is difficult to imagine in the absence
of real capacities to control and verify that the inferences are not “unreasonable”. Most of
the inferences are not known to the persons concerned. Consequently, it would be difficult
to say whether or not it is “reasonable”. It would be more useful to enshrine a right not to
suffer negative consequences of inferences or decision-making by algorithms, unless there is an
explanation and justification by a human being of the unfavorable decision thus made.

Accountability and public reason. From an ethical perspective, some convergences be-
tween privacy and accountability can be pointed out, such as the possibility that accountability
approaches can help in demonstrating that a company has respected a particular privacy
requirement. In addition, in response to the lack of the accountability mechanisms and legal
standards that could govern decision processes in machine learning, Binns [Binl8| argues that
the notion of public reason — in brief, the idea that rules, decisions, and outcomes need to be
justifiable by common principles — might reasonably fill this gap. This argument echoes one of
the two concepts of accountability defined by Bovens [Bov10]: that accountability as a virtue
(a normative concept or a set of standards) as well as as a mechanism (a descriptive concept
seen as a social mechanism ensuring one can be held accountable).

Both concepts are important in democracy but for different reasons. Accountability as
a virtue is important because it provides legitimacy, while accountability as a mechanism
is instrumental in achieving accountable governance, and thus contributes to the legitimacy
of public governance. Therefore, Binns [Binl8| normative argument drawing from political
philosophy stipulates that the notion of public reason “is an answer to the problem of reasonable
pluralism in the context of algorithmic decision making”. In other words, if “decision-maker’
and “decision-subject” disagree over the adequacy of the justifications provided for a decision
made from the use of personal data, that conflict could be resolved by referring to the grand
principles of the public reason.

Y

Connections between transparency, accountability and privacy. As Binns [BinlS§]|
puts it, a potential challenge of his model of accountability is raised by the opacity of some
algorithmic decision-making systems that may lead to “algocracy”, in which “the legitimacy of
public decision-making processes” is thwarted by “the opacity of certain algocratic governance
systems” [Danl6|: “Considering the wide range of machine learning methods available, there
are trade-offs to be made between interpretability and accuracy ”. In addition to privacy, this
also highlights the strong connection between transparency and accountability in the sense
that the former is often a prerequisite for the latter.

On this topic, other authors endorse a stronger position such as Ananny and Crawford [ACTS]
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who argued that “if a system is so complex that even those with total views into it are unable
to describe its failures and successes, then accountability models might focus on the whether
the system . ..should be built at all”. However, as Binns [Binl8| put it, accounting for a system
can be more than explaining its outputs. Indeed, sometimes what matters will not be how
a system arrived at a certain output, but what goals it is supposed to serve, which inputs
were involved in, etc. This is the reason why a crucial element of accountability, in terms of
privacy, is design. Machine learning models should be designed for privacy by implementing
appropriate technical and organizational measures prior to and during all phases of collection
and processing in such a way of ensuring the respect of privacy.

Practical implementation of accountability contributing to privacy. For account-
ability to really enhance privacy protection and meet expectations, some authors called for
the need to translate it not only in general principles but into practical measures that take
into account its plural dimensions [Ben95, BLM15|. Thus, Butin and Le Métayer [BLMI15]
developed a systematic approach covering the entire life cycle of personal data (“end-to-end
accountability”), considering three types of accountability: accountability of policy (i.e., a given
organization should be able to prove it has a clear and defined privacy policy), accountability
of procedures (i.e., a given organization should be able to demonstrate that its procedures
are sufficient for the implementation of its privacy policy) and accountability of practice (i.e.,
a given organization should be able to demonstrate its privacy policies have effectively been
met. As stated by Butin and Le Métayer: “Roughly speaking, the first type of accountability
is purely declarative and provides at best a form of legal guarantee (binding commitment); the
second type adds guarantees at the organizational level but only the third type can deliver
the full promises of accountability”. Despite the lack of — and above — legal accountability
mechanisms, this end-to-end accountability, also referred to as “accountability by design” may
prove to ensure better privacy protection related to machine learning models using personal
data.

Privacy by design should definitively be part of the solution, but as argued by Guagnin,
Hempel and Ilten, “it cannot provide for the discourse that is missing in the current regime.
Both regimes — the legal paradigm regime and a possible technological paradigm regime,
black-box rules and logics and conceal them behind complex artefacts — impervious to the
public. We argue that this is exactly what needs to change: we envision a regime governed by
a “discourse paradigm”. This is where accountability comes into play” |[GHI12].

7.4 Tensions

Disclosure of private information with heightened transparency. An individual that
is held to account must be more transparent about its practices. The main tension between
privacy and accountability comes from the risk that heightened transparency could lead to
the disclosure of private information. Consider a case wherein a company would use machine
learning to screen job applicants and would be held to account about the non-discriminatory
nature of its selection process. The company may want to provide data about the applicants
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profiles to show there is no bias, but this data may allow to identify some candidates. One
impact of having more accountability in this case would be the disclosure of personal information
on specific job applicants. An obligation of account-giving may also place an organization in a
difficult position regarding the protection of non-personal information that must not be made
public, such as a trade-secrecy, proprietary technologies or other internal information.

In an analysis of the limitations of transparency, Mike Ananny and Kate Crawford [ACIS8]|
suggest that it can do great harm if implemented without a notion of why some part of a
system should be revealed: it may “threaten privacy and inhibit honest conversation” and
“expose vulnerable individuals or groups to intimidation by powerful and potentially malevolent
authorities”.

However, the risks of disclosure with more accountability should not be exaggerated, for a
careful specification of the type of accountability that is expected can often mitigate these risks.
First, there are different types of accountability depending on the forums that is responsible
for receiving an account [Bovl, (Wie]. In particular, political accountability corresponds to the
situation in which the civil servants in a public organization have to account for their practices
to political superiors. In this case, the obligation of account-giving is the consequence of
the delegation of power from citizens to their political representatives. Legal accountability
typically involves the legal obligations of an agent and a judges or jury will act as a forum.
There is also a wide range of quasi-legal forums that exercise independent administrative and
financial supervision or control, and these would create a form of Administrative accountability.
Professional accountability concerns the relations between a professional and his peer group
or professional association. Finally, there are more direct accountability relations between
public or private agencies and their clients, citizens, or even civil society, which we may refer
to (slightly differently than Boven’s definition) as social accountability.

Political and social types of accountability are more public in nature given the type of
forum and the delegation of power that are involved. These forums may also involve larger
group of individuals, which make it even more difficult to contain or control the information
that they receive. If proper account-giving is likely to involve sensitive information, then it may
be preferable to favour other types of accountability, such as administrative, professional or
legal accountability. With administrative accountability, a forum may deliberate behind close
doors, control the information that is made public or at least insure that there is no violation
of privacy. It is also easier for the member of these forums to comply with various forms of
non-disclosure agreements, which can provided additional guarantees.

One option to protect against the disclosure of private information comes from the type of
forum of accountability that is involved, another option is to specify the type of justification
or explanation that ought to be provided. In the field of explainable Al (XAI), as least four
approaches to make algorithms intelligible can be outlined: (1) ezplaining the model behind an
algorithm, (2) ezplaining the outcomes of an algorithmic decision or process, (3) inspecting the
black box and (4) creating a transparent box model |GMRT 18, [And].

If there is a risk that account-giving will violate privacy in making private information
accessible, as that was the case with the algorithm for selecting job applicants mentioned above,
then an option is to favour the approaches (1), (3) or (4). Indeed, these approaches focus either

35



on the global logic of a system, inspecting the inner functioning of a system or making a system
open or transparent. Therefore, it is easier to engage in these forms of accountability without
disclosing real inputs or outputs. In some cases, this may be sufficient to protect personal data
about people if this is part of the information flow of the system.

However, the types of explanation that are more likely to protect personal information,
usually also shed light on the inner functioning of an algorithm, which may create a risk for
protecting trade secrecy or information about internal processes. In this situation, another
option may be to favour approach (2) mentioned above: typically, providing an account on an
algorithms based on its outcome makes it easier to protect sensitive information about its inner
functioning. Due to this reason, some organizations will favour black-box explanations based
on inputs and outputs when attempting to provide an account about some of their algorithms
(see also the previous section on transparency).

Accumulation of private information. There is also an inherent tension between privacy
and the need to record a lot of information (e.g., in the form of logs) to provide an account of
one’s practices. The first tension discussed above concerns the risk of disclosure to external
parties, but even if these risks are mitigated, more accountability may lead to the accumulation
of more information that could be used internally even if it is not disclosed externally. Other
risks include data breaches, where external — or even internal — parties would access internal
data illicitly.

Although these risks are real, they can also be prevented in different ways. First, public and
private organizations should have good data management practices whether they are being held
to account or not. This includes proper security measures to prevent unwanted access to any
internal data, but also short and long term data management plans. An organization should
not accumulate data needlessly and it should destroy this data when is it not needed anymore.
Therefore, it is not clear that making organizations more accountable would necessarily lead to
more data accumulation, at least not if it is properly managed.

8 Privacy and Data Protection

8.1 Privacy and Security

Security in machine learning. The security of a system is often analyzed through the
lens of the CIA (Confidentiality, Integrity, Availability) model [PP12]. Confidentiality aims at
protecting the content of private information (e.g., email or file) from being disclosed to an
unauthorized entity while integrity ensures that the behaviour of the system or data that it
stores will not be altered by the adversary. Finally, availability is the property that the system
remains accessible to its legitimate users, even under extreme circumstances such as a natural
disaster or a distributed-denial-of-service (DDoS) attack.

In addition to the privacy attacks discussed in Section [3] machine learning models are also
vulnerable to security attacks targeting confidentiality, integrity or availability. In particular,
model extraction attacks aiming for accuracy can be viewed as attacks targeting confidentiality.
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When performing such an attack, the adversary seeks to obtain a high-accuracy surrogate that
can be used instead of the commercial API of the target model. In contrast, model extraction
attacks optimizing fidelity as the key metric are classified as privacy attacks as they allow the
adversary to learn information (e.g., the parameters or structure of the model) that can be
used as the first steps to mount more powerful attacks.

In the field of adversarial learning, attacks targeting integrity include adversarial exam-
ples [BCM ™13, |SZS™ 13|, which aims to alter a machine learning model’s behaviour at inference
time, and data poisoning [NBCT08, [JOB™ 18|, which occur at training time to influence the
structure of the model learned. Finally, sponge examples |[SZBT20| are the only documented
attacks to date that target the availability of the machine learning model. In such an attack,
the adversary crafts input data that have the property to increase both the target model’s
inference time and energy consumption.

Convergence : Security as a necessary condition for privacy. From a legal perspective,
the convergence between privacy and security is obvious, as personal data should be processed
in a manner that ensures appropriate security and confidentiality of the personal data, including
for preventing unauthorized access to or use of personal data and the equipment used for the
processing. This obligation to provide security means it is very important to protect privacy
and, more broadly, fundamental rights. If not addressed in an appropriate and timely manner,
a personal data breach may result in physical, material or non-material damage to individuals
such as loss of control over their personal data or limitation of their rights, discrimination,
identity theft or fraud, financial loss, unauthorized reversal of pseudonymization, damage to
reputation, loss of confidentiality of personal data protected by professional secrecy or any
other significant economic or social disadvantage to the individual concerned. For this reason,
in case of breach of security, some safeguards must be implemented, such as the notification of
the breach to the individual whose data has been stolen in order to mitigate the harm or risk
of harm to the individual that could result from the breach.

Tension : Defense mechanisms addressing security risks can increase the success
of privacy attacks. In machine learning, works in security and privacy are often done
separately. As a result, the interaction between privacy and security is often not considered
in existing defense techniques to mitigate security risks. For instance, Song, Shokri and
Mittal [SSM19] have shown that defense techniques designed to protect machine learning
models against adversarial examples [BCM™13} ISZS™T13| also make them more vulnerable to
membership inference [SSSS17].

8.2 Privacy and Right to Erasure

Convergence : Implementing the right to erasure in machine learning. Machine
unlearning [CYT5, [GGVZ19, BCCCT19) is the process by which a machine model M trained
with a dataset D that contains the record x of a particular individual, can comply with
the “Right to erasure” of the latter by removing x from D as well as its contribution to the
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parameters of the model M. One approach to perform machine unlearning is the so-called SISA
(Sharded, Isolated, Sliced and Aggregated training) technique, in which the model designer
first partitions the original training dataset D into n disjoint subsets D1, Do, ..., D, before
training M as an ensemble of n sub-models My, Mo, ..., M, using the partitions. Since x only
contributes to one sub-model, implementing the right to erasure only involves retraining a
small part of the overall system.

Tension between privacy and the right to erasure. From a legal perspective, a tension
appears between privacy and the rights of freedom of expression and information regarding the
right of the data subject to obtain from the controller the erasure of personal data without
undue delay in specific circumstances. This can happen, for instance, if the personal data is no
longer necessary in relation to the purposes for which it was collected or otherwise processed.
However, by exception, this right of erasure shall not apply to the extent that processing is
necessary for exercising the right of freedom of expression and information (see GDPR, article
17). One of the challenges for machine learning is to sort through the data as soon as an
exception applies.

Another ethical issues with machine learning systems making predictions about an individ-
ual’s future based only on their past data, is that such system assumes no change in individual
or societal behavior. In particular, if there is a past error, the future is considered with an
unfavorable prediction. From a legal point of view, if we assume a predictive tool for recidivism
based on the past, an individual who has already had difficulties with the justice system will
be badly rated, especially if he has been sentenced to a prison term. This contravenes the
principles of the right to be forgotten when sentences have been served, as well as the right to
social reintegration.

Tension between machine unlearning and privacy. A recent work [CZW 20| has shown
that satisfying the right to erasure of a user through machine unlearning can cause the machine
learning model to become vulnerable to membership inference. More precisely, the attack
proposed by the authors exploits the difference in the predictions of the original model and the
unlearned model. The attack runs in two phases. During the first phase, the adversary collects
the prediction and the confidence value of the original model for a given target user, while
during the second phase, the same query is made but on the unlearned model. The information
collected is then used to train a meta-classifier that can distinguish between members and
non-members of the model’s original training set.

Another issue to consider is that given the computational cost of machine unlearning and
the impact it might have on the performance of a machine learning model, a model designer
can be tempted to organize the records in the partitions by grouping data subjects that are
more likely to claim their right to erasure together. From this perspective, the right to erasure
can be seen as a catalyst to anti-data minimization practices, in which the model designer will
collect more data to infer users that are more likely to require machine unlearning.
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9 Privacy and Ethics Washing

Another important issue that can arise in the development of ethically-aligned machine learning
is ethics washing, which corresponds to promoting the false impression of respecting ethical
values while it might not be the case [Wagl8, WD19| YHP19, [Grel9, [Flo19]. The fact that
private or public organizations can use marketing or communication techniques to promote a
positive perception of their practices regarding sensitive ethical matters in society is not a new
issue per se. For instance, public corporations often engage in what is commonly referred to as
“sreenwashing”, which promotes an inaccurate perception of their commitment to protecting the
environment. Within the big tech industry, the application of similar as well as new techniques
to promote a positive ethical perception of machine learning applications can be observed,
leading to ethics washing.

In this section, our main objective is to define how the notion of ethics washing applies to
the context of machine learning and to explore the associated technical, legal and ethical issues,
especially for ensuring proper accountability in the development and use of machine learning
applications. More precisely, we will first review different forms of ethics washing in machine
learning, illustrating them with examples. For instance, we will discuss (1) the concept of
privacy washing that arises in ML when a model producer falsely claims that its model protects
the privacy of the users, (2) the risk of metrics’ cherry-picking in algorithmic fairness, and (3)
how fairwashing can arise when post-hoc explanation techniques are used to hide the harmful
behaviour of black-box models. Then, we analyze why ethics washing is precisely an ethical
issue from an ethical perspective. Afterwards, we summarize why the plethora of available
ethical guidelines are not enough to adequately address ethics washing and why regulations will
ultimately be needed. Finally, we discuss two possible approaches that could be explored to
limit the possibility of conducting ethics washing and to improve accountability of ML models.

Ethics washing in machine learning. The concept of ethics washing has been coined
by Wagner and Delacroix to characterize strategies that can prevent or influence legal regu-
lations [WD19]. In this work, we define ethics washing in machine learning as a claim with
respect to an ethical aspect of the ML model whereby a corporation or another organization
(1) promotes a positive ethical perception of a practice, product, aim, policy, ...related to the
ML model to the public, a governmental agency or another individual within the group and
(2) such that this perception is inaccurate in the sense that the real practice of the company
is less ethical than what is being promoted. This definition is very similar to what has been
discussed by [Wagl8| and [Met19]. The idea of ethics washing is also close from what [Haw12]
refers to as “ethical chic” and what David Vogel calls the “market for virtues” [Vog07]. While
ethics washing is often an exercise of public relations [Bie20], it does not always have to be so.
For instance, this can happen if an organization’s message aims its own members, as opposed
to people outside the group. One may think, for example, of the positive image that Google
and big technological corporations want to promote to the public and governmental agencies,
but also their own employees. Hereafter, we describe some plausible manifestations of ethics
washing in machine learning in different contexts.
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9.1 Privacy washing

Differential privacy [DMNS06] is a privacy model proposed by Cynthia Dwork and collaborators
that aims at preventing the inferences that can be performed with respect to individuals whose
records are stored on a dataset by limiting the influence of any record on the output of a
computation performed on this dataset. In contrast to other privacy models such as k-anonymity,
l-diversity or t-closeness [Swe(2, [ADJMO07, [LLVQT7|, the guarantees provided by differential
privacy on the information leakage holds regardless of the attacker’s background knowledge.

The level of protection provided by a differentially-private mechanism is usually a function of
a parameter €. More precisely, the smaller the parameter ¢, the better the protection offered by
the mechanism. Thus, differential privacy enables to formally and easily evaluate privacy-utility
trade-offs by observing how a particular utility measure evolves when changing the value of e.
However, when differential privacy is incorporated in the training of a ML model, a given value
of € can have different meanings. For instance, [JE19] have observed a significant gap between
the theoretical privacy loss of differentially-private ML algorithms and the effective success
rate of privacy inference attacks, such as membership inference attacks [SSSS17] and attribute
inference attacks [YGEJ1§].

In the context of machine learning, privacy washing can be achieved by simply advertising
(1) the use of differential privacy without specifying neither the differentially-private mechanism
nor the value of the parameter € or (2) the use of a particular privacy mechanism with parameter
€ that provides meaningless privacy guarantees. Concretes examples of privacy washing by
big techs have been mainly observed in the context of data analytics. For instance, Apple
has been criticized for irresponsible and potentially insecure implementation of differential
privacy [TKB™17, [Grel7].

While currently differential privacy has been mainly used in practice for performing simple
analytics tasks in a privacy-preserving manner, in the future it is possible that a company
might be tempted to use it for the training of ML models that it will publicly release!?. In
such a case, the value of the privacy parameter will be crucial to determine the real protection
provided to individual and to avoid privacy washing.

9.2 Fairness washing

Given a black-box model that exhibits discrimination against a particular subgroup of the
population according to a specific fairness definition, a simple way to perform ethical washing,
which we coined as fairness metrics’ cherry-picking, is to choose from the myriad of fairness
metrics, another metric that would seem not to discriminate against the considered group.
There are currently many different ways to define and quantify the fairness of a ML model,
and there is no consensus in the community on which fairness notion should be used for a
particular prediction task. In addition, some of these fairness notions are incompatible in the

10WWhile most of the big tech companies usually do not share the data of their users due to privacy and
confidentiality reasons, on the other hand, it is common for them in the machine learning context to share the
by-products of their analysis such as ML models
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sense that optimizing a particular fairness metric can have a detrimental effect on another one.
In particular, requiring that a particular ML model exhibits group fairness is likely to prevent
the possibility of reaching individual fairness and vice-versa.

This lack of consensus on what fairness definition is appropriate in a particular context
opens the door for the black-box model producer to choose the fairness metric that is the most
favorable to him. For instance, he could confidently claim that his model is not discriminating
while it is the case according to the original metric. Real-world examples of such practice
include the cases of automated hiring systems such as Pymetrics and HireVue that explicitly
claim, while using only demographic parity, that their black-box hiring systems implement bias
discovery and mitigation [SMDE20].

9.3 Explainability and fairwashing

Post-hoc explanation techniques are often plebiscited as a way to achieve accountable machine
learning. However, recently a growing body of research has exposed the issue that these
techniques can be arbitrarily manipulated to gain the trust of the users. For example, the
explanations can give the impression that the black-box models exhibit non-discriminatory
patterns while it might not be the case. In particular, most of the explanation methods are
flexible in the manner that they explain a black-box model in the sense that they are usually
many different and diverse explanations, all with similar fidelity with respect to the predictions
of the ML model, that can be generated. This allows to manipulate the explanations to perform
ethics washing. In Table 7] we summarize recent works that have investigated the risk that
post-hoc explanation techniques can be intentionally used to fool users.

Concept Reference Agnostic Global Local Feature importance Example Visualization Text

Fairwashing JAAFT19] v v v X X X v

Stealthily Biased Sampling [FHM19] v v X X v X X
[HIM19]

Misleading Saliency Maps [DAAT19 X X v v X v X
[APD20)

Unjustified Counterfactual Explanations —|[LLM™19) v X v X v X X

Public Relations attack [MT19] v X v X X X X

Scaffolding |[SHI™19) v X v X X X X

Misleading black-box explanations |ILB19] v v X X X X v

Table 7: Summary of works related to ethics washing in post-hoc explainability

For instance, Aivodji, Arai, Fortineau, Gambs, Hara and Tapp raised the awareness of
the risk of fairwashing |[AAFT19| through global and local explanations’ manipulation,
which is the possibility that post-hoc explanation techniques could be used to provide cover for
unfair black-box ML models. They coined the process by which this fraud can be performed
as rationalization and devised LaundryML, an algorithm that can systematically rationalize
black-box models’ decision through global or local explanations. Given access to an unfair
black-box model B, LaundryML, produces an ensemble of interpretable surrogate models that
are fairer than B according to a predefined notion of fairness. To realize this, the objective
function of the learning algorithm is modified to minimize the misclassification error while
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improving fairness. The learning algorithm searches over the space of potential interpretable
models and enumerates fair yet faithful ones. These interpretable models can then be used to
under-report the degree of the unfairness of the original black-box model.

ILB19] have also investigated the possibility that black-box models can be explained with
high fidelity by global interpretable models whose features are very different from that of
the black-box and look innocuous. More precisely, they propose a technique to generate
misleading explanations by maximizing the fidelity of the interpretable surrogate models while
favouring models composed of features that users believe are appropriate, in contrast to models
whose features can be considered problematic by users (e.g., because they could be considered
discriminatory).

Slack, Hilgard, Jia, Singh and Lakkaraju have demonstrated that variants of LIME [RSGI6]
and SHAP [LL17], two popular post-hoc local explanation techniques, can be manipulated to
underestimate the unfairness of black-box ML models [SHJT19|. Following the same line of
work, Merrer and Tredan have demonstrated that a malicious model producer can always craft
a fake local explanation to hide the use of discriminatory features [MT19|. In addition, they
showed that it is impossible to detect such manipulation if the user can only make a limited
number of queries to the model as the detection requires an exhaustive search of the input
space, which is unlikely to be feasible for most real-world datasets.

Laugel, Lesot, Marsala, Renard and Detyniecki have highlighted a risk related to the use
of counterfactual explanation [LLM™19|, which is a form of example-based explanations’
manipulation. Counterfactual explanations are usually used to help individuals to understand
how they can modify attributes of their profiles that are under their control to change the
outcome of the machine learning model by showing instance matching that criteria [WMR17].
To formalize the notion of manipulation in this context, the authors defined the concept
of justification relative to counterfactual explanations. Given a black-box model B and a
counterfactual ¢, produced to explain a decision of B, ¢, is justified if it lies within a cluster
(i.e., an ensemble of instances) in which there exists an actual instance of the training set of
B. This means that the counterfactual is actually back-up by ground-truth data. Using this
criterion, the authors have demonstrated that the risk of unjustified counterfactual is actually
high in post-hoc counterfactual explanations.

In the same context of example-based explanations’ manipulation, Fukuchi, Hara and
Maehara have also introduced the risk of stealthily biased sampling [FHM19], which occurs
when a model producer explains the behaviour of its black-box model by sampling a subset
S of its training dataset D. In this setting, a dishonest model producer can sample S in
such a way that (1) S is fairer than D, for a given definition of fairness, and (2) it is hard
to distinguish the distribution of S from the underlying distribution P of D. The authors
also prove the hardness of detecting this fraud by showing that it would be hard for the most
powerful detector (i.e., one that has access to the underlying distribution P) to distinguish S
from P with a Kolmogorov—Smirnov test, which is a classical test in statistics to assess whether
two distributions are identical or not [M.J51].

Visualization-based explanation techniques can be also be manipulated, as shown by recent
work on saliency map based explanations’ manipulation [HIJM19, DAAT19|. More

42



precisely, Heo, Joo and Moon have shown that these types of explanations are vulnerable
to the so-called adversarial model manipulation [HIM19]. Given a black-box model B and a
target saliency map h;, adversarial model manipulation aims at forcing the saliency map of any
input to be similar to h;. This goal is achieved by fine-tuning B with a training objective that
penalizes the original training objective of B with a term involving h;. The resulting model
B’ displays an accuracy close to that of B but produces for any input a saliency map that is
similar to h;. In a similar direction, Anders, Pasliev, Dombrowski, Miiller and Kessel have
further demonstrated that the model can be manipulated such that it has perfect fidelity with
the black-box model B while reproducing arbitrary saliency maps |[APD720|. Following the
same line of research, Dombrowski, Alber, Anders, Ackermann, Miiller and Kessel [DAAT19]
have demonstrated that saliency map based techniques are also vulnerable to adversarial input
manipulation.

9.4 Case study 2 : Characterization of the risk of fairwashing

In this section, we will present a concrete example of the tension between fairness and
explainability. In particular, we will discuss how fairwashing is possible in the context of an
unfair black-box model that will be explained by a fairer model through post-hoc explanations’
manipulation. However, to realize this, the post-hoc explanation model must produce different
predictions than the original black-box on some inputs, leading to a decrease in the fidelity
imposed by the difference in unfairness. A more detailed version of this case study can be

found in [AAGH2I].

9.4.1 Setting and problem formulation

Notations. Let X € X C R” denote a feature vector, Y € Y = {0, 1} its associated binary
label (for simplicity we assume a binary classification setup without loss of generalization)
and G € G = {0,1} a feature defining a group membership (e.g., with respect to a sensitive
attribute) for every data point sampled from X. In addition, we assume that B : X — Y
refers to a black-box classifier of a particular model class B (e.g., neural network or ensemble
model) mapping any input X € X’ to its associated prediction Y ey Finally, let e : X — )
be a global explanation model from a particular model class € (e.g., linear model, rule list or
decision tree) designed to explain B.

We train a classifier f (black-box model or explanation model) by minimizing its average
loss Lp(f), for a given loss function [ : ) x Y — R™ (e.g., cross entropy), over a dataset of
interest D (e.g., training set or suing group), which means Lp(f) = E(,, y~pll(f(7:),%:)]. In
addition, the performance of f is also measured in terms of its unfairness unfp(f) on D.

In this work, we focus on statistical notions of fairness [CV10l [Chol7, (CDPF*17, HPS™16],
which require a model to exhibit approximate parity according to a statistical measure across
the different groups defined by the group membership G. In particular, we consider four
different statistical notions of fairness, namely statistical parity [DHPT12, [CV10, KAAST2,
FEM™15, [ZIiT15], predictive equality [Chol7, ICDPFT17|, equal opportunity [HPST16] and
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equalized odds [Chol7, KMRI7, HPS™16, ZVGRGIT|. The definitions of these fairness metrics
are listed in Table B

Table 8: Summary of the different statistical notions of fairness considered.

Fairness notion Definition
Statistical Parity (Agp) [P(Y =1|G=0)—P(Y =1|G =1)|
Predictive Equality (Apg)  |[P(Y =1]Y =0,G=0)— P(Y =1|Y =0,G = 1)

v
Equal Opportunity (Agopp) |[P(Y =1Y =1,G=0) - P(Y =1Y =1,G = 1)]
Equalized Odds (Agoqds) [PV =1y =1,G=0)—PY =1y =1,G=1)] and [P(Y = 1|]Y =0,G =0) — P(Y = 1]Y =0,G = 1)

Problem formulation. Our investigation is motivated by the previous work from [AAFT19],
who have defined fairwashing in model and outcome explanations as a manipulation exercise in
which high-fidelity and fairer explanations can be designed to explain unfair black-box models.

Definition 2 (Global explanation fidelity) Let B be a black-box model, e a global ex-
planation model for B and X a set of data instances. Following the definition in [CS96], the
fidelity of e with respect to B on X is expressed as:

fidelity(e) — |X1| S I(e(x) = B(x).
zeX
Definition 3 (Global fairwashing attack) Let B be a black-box model and X, a set of
data instances hereafter referred to as suing group. A global fairwashing attack consists in
finding an interpretable global model e = p(B, X,4) derived from the black-box B and the suing
group X, using some attack process p(-,-), such that e is fairer than B for a given fairness
metric.

[AAFT19| devised LaundryML, an algorithm that can systematically fairwash unfair black-
box models’ decisions through both global and local explanations. LaundryML is a constrained
model enumeration technique [HM17| that searches for explanation models maximizing the
fidelity while minimizing the unfairness for a given unfair black-box model.

While [AAFT19| focused on the search of high-fidelity explanation models to perform
fairwashing attacks, our work goes a step further by determining the fidelity-unfairness trade-
offs of those attacks. This allows for a better characterization of the manipulability of the
explanations. For this purpose, we will compute the set of Pareto optimal explanation models
describing all the achievable fidelity-unfairness trade-offs, by solving the following problem:

minimize Lp,,(e) (4)

subject to  unfp, (e) <e,

in which e is the explanation model, Dy, = { X4, B(Xsg)} is formed by the suing group and the
prediction of the black-box model B on the suing group, while € is the value of the unfairness
constraint.
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9.4.2 Experimental evaluation

The main objective of this section is to demonstrate empirically that (1) the incurred error in the
fidelity imposed by fairwashing can be very small (Section [9.4.3), (2) fairwashing can generalize
beyond suing groups (Section [9.4.4]) and (3) transfer across black-box models (Section [9.4.5]).

Datasets. We have investigated a real-world data commonly used in the fairness literature,
namely Adult Income.

Adult Income. The UCI Adult Income |[FA10| dataset contains demographic information
about 48, 842 individuals from the 1994 U.S. census. The associated classification task consists
in predicting whether a particular individual earns more than 50,000$ per year. We used
gender (Female, Male) as group membership.

Preprocessing. Before running the experiments, the dataset is split into three subsets,
namely the training set (67%), the suing group (16.5%) and the test set (16.5%). Overall, we
created 10 different samplings of the three subsets using different random seeds, the results of
all the experiments being averaged over these 10 samples. The training set is directly used to
train the black-box models, while the suing group dataset is used to prepare the explanation
models as well to evaluate their fidelity-unfairness trade-offs. Finally, the test set is used to
assess the accuracy of the black-box models as well as the generalization of the explanation
models beyond their suing groups. For all models (i.e., black-boxes and explanation models),
we used a one-hot encoding of the features of the dataset.

Black-box models. We have trained four different types of black-box models on the dataset,
namely a Deep Neural Network (DNN), a Random Forest (RF) [Bre0l], a AdaBoost clas-
sifier [FS97] and a XgBoost classifier [CG16]. To tune the hyperparameters of these mod-
els, during their training, we performed a hyperparameter search with 25 iterations using
HyperOpt [BYC13].

Explanation models. We solved the optimisation problem defined in Equation 4] for logistic
regression model class. In particular, we used the exponentiated gradient technique [ABD™18§],
which is a model agnostic technique to train any classifier under fairness constraints (we use
its implementation in the Fairlearn library [BDE™20)).

9.4.3 Experiment 1: fidelity-unfairness trade-offs in fairwashing
The main objective of this experiment is to characterize the fidelity-unfairness trade-offs

incurred by fairwashing when using different fairness metrics and black-box models.

Setup. Given a suing group X4, for each black-box model B and each fairness metric m, the
Pareto fronts are obtained by first sweeping over 300 values of fairness coefficients ¢, € [0, 1].
Afterwards, for each value of €,,, an explanation model e, is trained to satisfy the unfairness
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constraint €,, on Xy, by solving the problem in Equation E| for logistic regression. Then, its
effective unfairness and fidelity (with respect to B) on X, are returned. Finally, the set of
non-dominated points is computed.

Results. Top rows in Figure [6] show the fidelity-unfairness trade-offs of fairwashed logistic
regression explainers found for the four black-box models, respectively on Adult Income,
for members of the suing group, using four different fairness metrics: equalized odds, equal
opportunity, predictive equality and statistical parity.

Consistently over all these results, we observe that the fairwashed explanation models found
for the suing groups were significantly less unfair than the black-box models while maintaining
high fidelity. More precisely, for any combination of fairness metric m and black-box model
B, a fairwashed logistic regression displays an unfairness less than 50% of the unfairness of B
while maintaining a fidelity greater than 90%.

9.4.4 Experiment 2: generalization of fairwashing beyond suing groups

The main objective of this experiment is to assess the generalization of a fairwashed explanation
models beyond the suing group. This generalization indicates whether or not fairwashing is an
attack that has to be tailored for a particular subset of data instances or whether it is more
generic in its scope and thus also more problematic.

Setup. We used the same experimental setup as in Experiment 1. However, the unfairness
and fidelity of the explanation model are computed on a test set Xtest such that Xgg N Xiesr = 0.
The role of X4 is to mimic non-members of the suing group X4, which is targeted by the
fairwashed explanation model.

Results. Bottom rows in Figure [6] show the fidelity-unfairness trade-offs of fairwashed logistic
regression explainers found for the four black-box models on Adult Income, for non-members
of the suing group, using four different fairness metrics: equalized odds, equal opportunity,
predictive equality and statistical parity.

Overall, the results show that the explanation models designed for a particular suing group
generalize well also to non-members of that suing group by achieving similar fidelity-unfairness
trade-offs. The small gap between results on members of the suing group X, and those on
non-members Xyes: can be explained by the fact that methods for learning fair classifiers are
usually not robust to perturbations in the training distribution [HV19], resulting in fairness
violations when evaluated on test sets. In fact, the fairwashing attack defined in Equation [] is
equivalent to a problem of training an interpretable model under a fairness constraint, in which
the training pair (X,Y") is formed by the suing group X, and the predictions B(X,) of the
black-box B. As a result, the issue of generalizing beyond the suing group can be reduced to the
problem of generalizing fairness beyond the training set. In our scenario, the fairness violations
are small enough to favor high-fidelity explanation models on the test set. Nonetheless, with
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the development of robust fairness-enhancing techniques (e.g., [MDJ"20]), it is reasonable to

expect that this small gap in fidelity could be narrowed further in the future.
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Figure 6: Fidelity-unfairness trade-off of fairwashing attacks for equalized odds, equal opportu-
nity, predictive equality and statistical parity metrics on Adult Income, using logistic regression
models as explanation models. Vertical lines denote the unfairness of the black-box models.
Results are averaged over 10 fairwashing attacks.

9.4.5 Experiment 3: transferability of fairwashing

The objective of this experiment is to verify whether an explanation model specifically designed
for a particular black-box model (called the teacher model) can be used to fairwash decisions
of other black-box models (here the student models). The motivation for this experiment is
similar to the study of transferability in the context of adversarial learning, which shows that
it is not so much the characteristics of the black-box model rather than that of the dataset and
the classification task that makes the attack possible.

Setup. Given a suing group X, a teacher black-box model Bicgcner, @ fairness metric m,

its associated fairness constraint €, and a set of student black-box models Bitudent’ with
i =1,...,n, an explanation model e, is trained to satisfy the unfairness constraint €,, on X,

by solving the problem in Eq [ for logistic regression. Afterwards, the unfairness and fidelity
of e, are evaluated with respect to each of the student black-box models B, ;.,,; on Xsq. For

this experiment, we considered four black-box models (AdaBoost, DNN, RF and XgBoost).
First, we fixed one model as the teacher black-box model and used the remaining ones as the
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Logistic Regression
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Figure 7: Fidelity of the fairwashed logistic regression models that are 50% less unfair than
the black-box models they are explaining. Results (averaged over 10 fairwashing attacks) are
shown for AdaBoost, DNN and RF black-box models, for all datasets and fairness metrics. The
content of each cell is in the form of z¥, in which x represents the fidelity of the fairwashed
explanation model, and y its percentage change with respect to the fidelity of the unconstrained
explainer, used here as a baseline.
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Figure 8: Analysis of the transferability of fairwashing attacks for equalized odds, equal
opportunity, predictive parity and statistical parity on Adult Income, for ¢ = 0.05, and for
logistic regression explanation models. The result in each cell is in the form of %, in which y
denotes the label agreement between the teacher black-box model and the student black-box
model, z is the fidelity of the fairwashed explanation model and z is its unfairness. Blank
cells denotes the absence of transferability for the unfairness constraint imposed. Results are
averaged over 10 fairwashing attacks.
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student black-box models. We conducted the experiments for all four possible combinations of
the teacher-student models. We evaluated the transferability for an unfairness constraint of
0.05.

Results. Figure [§| displays the fidelity and unfairness of fairwashed logistic regression ex-
plainers with respect to both the teacher and the set of student black-box models on the suing
group Xg4. Results are shown for Adult Income, for all fairness metrics.

Overall, our results demonstrate that fairwashing can transfer with high fidelity for most
models. For instance, on Adult Income with an equal opportunity constraint set to 0.05, a
fairwashed logistic regression explainer that had a fidelity of 96% for a DNN teacher model
successfully transferred to AdaBoost, RF and XgBoost student models with a fidelity of 91%,
95% and 94% respectively (c.f., Figure [3).

9.4.6 Discussion

In this case study, we have characterized the manipulability power of fairwashing attacks
by analyzing their fidelity-unfairness trade-offs in diverse situations. In particular, we have
demonstrated for different fairness metrics and black-box models that (1) fairwashed explanation
models can exhibit significantly low unfairness while having a high fidelity to the black-box,
(2) fairwashed explanation models can generalize beyond the suing group and (3) fairwashing
attacks can transfer across black-box models.

The first lesson to draw from our investigation is that relying on the fidelity as a proxy
for the quality of a post-hoc explanation can be misleading as a fairwashed explanation model
can exhibit high fidelity while being significantly less unfair than the black-box model being
explained. In addition, the results obtained for the generalization of fairwashed models
beyond suing groups demonstrate that a fairwashed explanation model can also rationalize
subsequent unfair decisions made by the original black-box model for free. This fact preclude
the possibility of designing fairwashing detection techniques that leverage on the instability
of the unfairness with respect to variations in the suing group. Indeed, such technique will
most likely fail against fairwashed explanation models designed using stable fair classification
algorithms [HV19, MD.J"20)].

Furthermore, while generalizing beyond the suing group enables a dishonest black-box
model producer to reuse its fairwashed explanation models for subsequent unfair decisions, the
transferability property shown in the experiments could help the latter to use a fairwashed
explanation models to rationalize unfair decisions for other black-box models than the one it
was designed for. As a direct consequence, a model producer accused of deploying a black-box
model providing unfair decisions could develop after ex post facto another black-box model
to rationalize the unfair decisions of the first one. These results also suggest that auditing
a black-box model for fairwashing should go beyond the model itself and consider the data
distribution as well as the learning task, and consider the Rashomon set of the explainer.
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10 Conclusion

Despite the fact that the interactions between privacy and ethics remain to be fully characterized
in the domain of machine learning, in this report we have tried to partially address this gap by
investigating some of the convergences and tensions between privacy and other ethical values
that should be integrated into real-life machine learning applications. For example, we have
seen that some implementations of fairness and security are in contradiction with privacy,
securing against vulnerabilities targeting machine learning models’ integrity can potentially
harm privacy, and making automated decisions more transparent through post-hoc explanations
can lead to powerful privacy attacks. We have also discussed the convergences and tensions
that exist between privacy and other values from a normative perspective, such as how the
right to erasure can conflict with privacy and how the former can even foster practices at odds
with data minimization.

To address these issues, we believe that a partial solution would be to enshrine a liability of
the processor that would be especially relevant in machine learning, as most of the controllers
do not deploy themselves Al systems but only use them. To guarantee efficient protection of
the data subject, a chain of liability from controllers to processors must be created. Another
recommendation would be to enshrine specific rules for profiling. At this stage, Bill C-11 does
not provide for any provisions, although measures would be necessary to establish a balance
between privacy and machine learning.

Furthermore, designing and troubleshooting a system that simultaneously exhibits all of
these properties would require a combination of expertise that is quite rare in today’s data
science job market. Therefore, it is crucial to consider separation of concerns approaches
favouring collaboration instead of over-specialization. For example, an algorithmic fairness
expert and a data privacy expert should be able to collaborate to design a machine learning
model that is simultaneously fair and robust against privacy inference attacks. Not only does
such an approach allows rapid development, but it also makes it possible to better benefit
from the advancement of the state of knowledge in the various fields involved. We have already
described existing contributions promoting such an approach through different convergences
we highlighted in this work.

Finally, we also recommend that AI decisions should be supervised by a human whenever
they are likely to affect the interests of individuals, as a group or individually. A particular
challenge being to verify the quality and the effectiveness of the human control, as well as the
moment of its intervention (before the decision is taken by the machine, afterwards, following
the whole process). The question of human control is essential, but we must be concerned
with the concrete modalities of its implementation to guarantee the protection of individuals’
interests. It is also necessary that the human control is effective and that the human is
not influenced by the machine, which must be verified. Stated more concretely, the human
intervention has to be a true way of oversighting.
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